Skip to main content

Design and Utilization of Natriuretic Peptide Antagonists

  • Chapter
Natriuretic Peptides in Health and Disease

Part of the book series: Contemporary Endocrinology ((COE,volume 5))

Abstract

Natriuretic peptides play an important role in the hormonal regulation of blood pressure and sodium balance (for review, see refs. 1–3). Recently, the actions of these hormones have extended beyond vasodepressor and natriuretic functions to embrace antiproliferative effects and a role in vascular remodeling (3). The naturally occurring members of the natriuretic peptide family include atrial (ANP), brain (BNP), and C-type natriuretic peptide (CNP) (1–3). Their tissue distribution differs substantially. Although the intracellular mechanisms through which natriuretic peptides elicit their diverse biological effects are not known, their biological effects are mediated by binding to specific membrane-associated receptors in the target tissues (4,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Inagami, T. Atrial natriuretic factor. J Biol Chem 1989;264:3043–3046.

    PubMed  CAS  Google Scholar 

  2. Needleman P, Blaine EH, Greenwald JE, Michener ML, Saper CB, Stockmann PT, Tolunay HE. The biochemical pharmacology of atrial peptides. Ann Rev Pharm Tox 1989;29:23–54.

    Article  CAS  Google Scholar 

  3. Espiner EA, Richards AM, Yandle TG, Nicholls MG. Natriuretic hormones. Endocrinol Metab Clin North Am 1995;24:481–509.

    PubMed  CAS  Google Scholar 

  4. De Lean A, Gutkowska J, McNicoll N, Schiller PW, Cantin M, Genest J. Characterization of specific receptors for atrial natriuretic factor in bovine adrenal zona glomerulosa. Life Sci 1984;35:2311–2318.

    Article  PubMed  Google Scholar 

  5. Napier MA, Vandlen RL, Albers-Schonberg G, Nutt RF, Brady S, Lyle T, Winquist R, Faison EP, Heinel LA, Blaine EH. Specific membrane receptors for atrial natriuretic factor in renal and vascular tissues. Proc Natl Acad Sci USA 1984;81:5946–5950.

    Article  PubMed  CAS  Google Scholar 

  6. Chinkers M, Garbers DL, Chang MC, Lowe DG, Chin H, Goeddel DV, Schulz S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 1989;338:78–83.

    Article  PubMed  CAS  Google Scholar 

  7. Waldman SA, Rapoport RM, Murad F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 1984;259:14,332–14,334.

    CAS  Google Scholar 

  8. Chang MC, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 1989;341:68–72.

    Article  PubMed  CAS  Google Scholar 

  9. Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 1989;58:1155–1162.

    Article  PubMed  CAS  Google Scholar 

  10. Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 1988;263:9395–9401.

    PubMed  CAS  Google Scholar 

  11. Nussenzveig DR, Lewicki JA, Maack T. Cellular mechanisms of the clearance function of type C receptors of atrial natriuretic factor. J Biol Chem 1990;265:20,952–20,958.

    CAS  Google Scholar 

  12. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 1991;252:120–123.

    Article  PubMed  CAS  Google Scholar 

  13. Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, Arai H, Saito Y, Kambayashi Y, Inouye K, Imura H. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology 1992;130:229–239.

    Article  PubMed  CAS  Google Scholar 

  14. Blaine EH. Atrial natriuretic factor plays a significant role in body fluid homeostasis. Hypertension 1990;15:2–8.

    PubMed  CAS  Google Scholar 

  15. Goetz KL. Evidence that atriopeptin is not a physiological regulator of sodium excretion. Hypertension 1990;15:9–19.

    PubMed  CAS  Google Scholar 

  16. Matsuda Y, Morishita Y. HS-142–1: a novel nonpeptide atrial natriuretic peptide antagonist of microbial origin. Cardiovasc Drug Rev 1993;11:45–59.

    Article  CAS  Google Scholar 

  17. Kambayashi Y, Nakajima S, Ueda M, Inouye K. A dicarba analog of β-atrial natriuretic peptide (β-ANP) inhibits guanosine 3′,5′-cyclic monophosphate production induced by α-ANP in cultured rat vascular smooth muscle cells. FEBS Lett 1989;248:28–34.

    Article  PubMed  CAS  Google Scholar 

  18. Kitajima Y, Minamitake Y, Furuya M, Takehisa M, Katayama T, Tanaka S. Linear a-human atrial natriuretic peptide analogs display receptor binding activity and inhibit a-hANP-induced cGMP accumulation. Biochem Biophys Res Commun 1989;164:1295–1301.

    Article  PubMed  CAS  Google Scholar 

  19. Abell TJ, Richard AM, Yandle TG, Espiner EA, Frampton C, Ikram H. Competitive peptide antagonists of ANF-induced cyclic guanosine monophosphate production. Biochem Biophys Res Commun 1989;164:108–113.

    Article  PubMed  CAS  Google Scholar 

  20. Von Geldern TW, Budzik GP, Dillon TP, Holleman WH, Holst MA, Kiso Y, Novosad EI, Opgenorth TJ, Rockway TW, Thomas AM, Yeh S. Atrial natriuretic peptide antagonists: biological evaluation and structural correlations. Mol Pharmacol 1990;38:771–778.

    Google Scholar 

  21. Weber W, Fischli W, Hochuli E, Kupfer E, Weibel EK. Anantin—a peptide antagonist of the atrial natriuretic factor (ANF). I. Producing organism, fermentation, isolation and biological activity. J Antibiotics 1991;44:164–171.

    CAS  Google Scholar 

  22. Morishita Y, Sano T, Ando K, Saitoh Y, Kase H, Yamada K, Matsuda Y. Microbial polysaccharide, HS-142–1, competitively and selectively inhibits ANP binding to its guanylyl cyclase-containing receptor. Biochem Biophys Res Commun 1991;176:949–957.

    Article  PubMed  CAS  Google Scholar 

  23. Morishita Y, Takahashi M, Sano T, Kawamoto I, Ando K, Sano H, Saitoh Y, Kase H, Matsuda Y. Isolation and purification of HS-142–1, a novel nonpeptide antagonist for the atrial natriuretic peptide receptor, from Aureobasidium sp. Agric Biol Chem 1991;55:3017–3025.

    Article  CAS  Google Scholar 

  24. Imura R, Sano T, Goto J, Yamada K, Matsuda Y. Inhibition by HS-142–1, a novel nonpeptide atrial natriuretic peptide antagonist of microbial origin, of atrial natriuretic peptide-induced relaxation of isolated rabbit aorta through the blockade of guanylyl cyclase-linked receptors. Mol Pharmacol 1992;42:982–990.

    PubMed  CAS  Google Scholar 

  25. Matsuda Y, Sano T, Imura R, Goto J, Yamada K. Specific inhibition by a novel atrial natriuretic peptide (ANP) antagonist of ANP-induced relaxation of aorta through the inhibition of cyclic GMP production. J Hypertension 1992;10(Suppl 4):S77.

    Google Scholar 

  26. Morishita Y, Sano T, Kase H, Yamada K, Inagami T, Matsuda Y. HS-142–1, a novel nonpeptide atrial natriuretic peptide (ANP) antagonist, blocks ANP-induced renal responses through a specific interaction with guanylyl cyclase-linked receptors. Eur J Pharmacol Mol Pharmacol Sec 1992;225:203–207.

    Article  CAS  Google Scholar 

  27. Sano T, Imura R, Morishita Y, Matsuda Y, Yamada K. HS-142–1, a novel polysaccharide of microbial origin, specifically recognizes guanylyl cyclase-linked ANP receptor in rat glomeruli. Life Sci 1992;51:1445–1451.

    Article  PubMed  CAS  Google Scholar 

  28. Takayanagi R, Inagami T, Snajdar RM, Imada T, Tamura M, Misono KS. Two distinct forms of receptors for atrial natriuretic factor in bovine adrenocortical cells. Purification, ligand binding, and peptide mapping. J Biol Chem 1987;262:12,104–12,113.

    CAS  Google Scholar 

  29. Leitman DC, Murad F. Comparison of binding and cyclic GMP accumulation by atrial natriuretic peptides in endothelial cells. Biochim Biophys Acta 1986;885:74–79.

    Article  PubMed  CAS  Google Scholar 

  30. Uchida K, Mizuno T, Shimonaka M, Sugiura N, Nara K, Ling N, Hagiwara H, Hirose S. Purification and properties of active atrial-natriuretic-peptide receptor (type C) from bovine lung. Biochem J 1989;263:671–678.

    PubMed  CAS  Google Scholar 

  31. Zhao J, Ardaillou N, Lu CY, Placier S, Pham P, Badre L, Cambar J, Ardaillou R. Characterization of C-type natriuretic peptide receptors in human mesangial cells. Kidney Int 1994;46:717–725.

    Article  PubMed  CAS  Google Scholar 

  32. Ohyama Y, Miyamoto K, Morishita Y, Matsuda Y, Saito Y, Minamino N, Kangawa K, Matsuo H. Stable expression of natriuretic peptide receptors: effect of HS-142–1, a non-peptide ANP antagonist. Biochem Biophys Res Commun 1992;189:336–342.

    Article  PubMed  CAS  Google Scholar 

  33. Kashiwagi M, Katafuchi T, Kato A, Inuyama H, Ito T, Hagiwara H, Takei Y, Hirose S. Cloning and properties of a novel natriuretic peptide receptor, NPR-D. Eur J Biochem 1995;233:102–109.

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka T, Ichimura M, Nakajo S, Snajdar RM, Morishita Y, Sano T, Yamada K, Inagami T, Matsuda Y. HS-142–1, a novel non-peptide antagonist for atrial natriuretic peptide receptor, selectively inhibits particulate guanylyl cyclase and lowers cyclic GMP in LLC-PK1 cells. Biosci Biotech Biochem 1992;56:1041–1045.

    Article  CAS  Google Scholar 

  35. Toki S, Morishita Y, Sano T, Matsuda Y. HS-142–1, a novel non-peptide ANP antagonist, blocks the cyclic GMP production elicited by natriuretic peptides in PC12 and NG108–15 cells. Neurosci Lett 1992;135:117–120.

    Article  PubMed  CAS  Google Scholar 

  36. Ishii K, Chang B, Kerwin JF Jr, Wagenaar FL, Huang ZJ, Murad F. Formation of endothelium-derived relaxing factor in porcine kidney epithelial LLC-PK1 cells: an intra- and intercellular messenger for activation of soluble guanylate cyclase. J Pharmacol Exp Ther 1991;256:38–43.

    PubMed  CAS  Google Scholar 

  37. Ohyama Y, Miyamoto K, Morishita Y, Matsuda Y, Kojima M, Minamino N, Kangawa K, Matsuo H. HS-142–1, a novel antagonist for natriuretic peptides, has no effect on the third member of membrane bound guanylate cyclases (GC-C) in T84 cells. Life Sci 1993;52:PL153–157.

    Article  Google Scholar 

  38. Kambayashi Y, Nakao K, Itoh H, Hosoda K, Saito Y, Yamada T, Mukoyama M, Arai H, Shirakami G, Suga S, Ogawa Y, Jougasaki M, Minamino N, Kangawa K, Matsuo H, Inoue K, Imura H. Isolation and sequence determination of rat cardiac natriuretic peptide. Biochem Biophys Res Commun 1989;163:233–240.

    Article  PubMed  CAS  Google Scholar 

  39. Kambayashi Y, Nakao K, Mukoyama M, Saito Y, Ogawa Y, Shiono S, Inouye K, Yoshida N, Imura H. Isolation and sequence determination of human brain natriuretic peptide in human atrium. FEBS Lett 1990;259:341–345.

    Article  PubMed  CAS  Google Scholar 

  40. Kambayashi Y, Nakao K, Kimura H, Kawabata T, Nakamura M, Inoue K, Yoshida N, Imura H. Biological characterization of human brain natriuretic peptide (BNP) and rat BNP: species-specific actions of BNP. Biochem Biophys Res Commun 1990;173:599–605.

    Article  PubMed  CAS  Google Scholar 

  41. Hirata Y, Matsuoka H, Suzuki E, Hayakawa H, Sugimoto T, Matsuda Y, Morishita Y, Kangawa K, Minamino N, Matsuo H, Sugimoto T. Role of endogenous atrial natriuretic peptide in DOCA-salt hypertensive rats. Effects of a novel non-peptide antagonist for atrial natriuretic peptide receptor. Circulation 1993;87:554–561.

    PubMed  CAS  Google Scholar 

  42. Furuya M, Yoshida M, Hayashi Y, Ohnuma N, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem Biophys Res Commun 1991;177:927–931.

    Article  PubMed  CAS  Google Scholar 

  43. Haneda M, Kikkawa R, Koya D, Sakamoto K, Nakanishi S, Matsuda Y, Shigeta Y. Biological receptors mediate anti-proliferative action of atrial natriuretic peptide in cultured mesangial cells. Biochem Biophys Res Commun 1993;192:642–648.

    Article  PubMed  CAS  Google Scholar 

  44. Atarashi K, Mulrow PJ, Franco-Saenz R, Snajdar R, Rapp J. Inhibition of aldosterone production by an atrial extract. Science 1984;224:992–994.

    Article  PubMed  CAS  Google Scholar 

  45. Atlas SA, Volpe M, Sosa RE, Laragh JH, Camargo MJF, Maack T. Effect of atrial natriuretic factor on blood pressure and the renin-angiotensin-aldosterone system. Fed Proc 1986;45:2115–2121.

    PubMed  CAS  Google Scholar 

  46. Oda S, Sano T, Morishita Y, Matsuda Y. Pharmacological profile of HS-142–1, a novel non-peptide atrial natriuretic peptide (ANP) antagonist of microbial origin. II. Restoration by HS-142–1 of ANP-induced inhibition of aldosterone production in adrenal glomerulosa cells. J Pharmacol Exp Ther 1992;263:241–245.

    PubMed  CAS  Google Scholar 

  47. Kawai M, Naruse M, Yoshimoto T, Naruse K, Shionoya K, Tanaka M, Morishita Y, Matsuda Y, Demura R, Demura H. C-type natriuretic peptide as a possible local modulator of aldosterone secretion in bovine adrenal zona glomerulosa. Endocrinology 1996;137:42–46.

    Article  PubMed  CAS  Google Scholar 

  48. Ganguly A, Chiou S, West LA, Davis JS. Atrial natriuretic factor inhibits angiotensin-induced aldosterone secretion: not through cGMP or interference with phospholipase C. Biochem Biophys Res Commun 1989;159:148–154.

    Article  PubMed  CAS  Google Scholar 

  49. Okamoto M. Effects of a-human atrial natriuretic polypeptide, sodium nitroprusside and dibutyryl cyclic GMP on aldosterone production in bovine zona glomerulosa cells. Acta Endocrinol (Copenh) 1988;119:358–366.

    CAS  Google Scholar 

  50. Schumacher H, Matsuda Y, Mukhopadhyay AK. HS-142–1 inhibits testosterone production and gua-nosine-3′:5′-cyclic monophosphate accumulation stimulated by atrial natriuretic peptide in isolated mouse Leydig cells. Mol Cell Endocrinol 1993;94:105–110.

    Article  PubMed  CAS  Google Scholar 

  51. Sakuta H, Okamoto K, Tandai M. Atrial natriuretic factor potentiates glibenclamide-sensitive K+ currents via the activation of receptor guanylate cyclase in follicle-enclosed Xenopus oocytes. Eur J Pharmacol Mol Pharmacol Sec 1994;267:281–287.

    Article  CAS  Google Scholar 

  52. Eguchi S, Hirata Y, Imai T, Marumo F. C-type Natriuretic peptide upregulates vascular endothelin type B receptors. Hypertension 1994;23[part 2]:936–940.

    PubMed  CAS  Google Scholar 

  53. Nachshon S, Zamir O, Matsuda Y, Zamir N. Effects of ANP receptor antagonists on ANP secretion from adult rat cultured atrial myocytes. Amer J Physiol Endocrinol Metab 1995;31:E428–432.

    Google Scholar 

  54. Honrath U, Matsuda Y, Sonnenberg H. Cardiovascular and renal functional effects of an antagonist of the guanylyl cyclase-linked ANF receptor. Regul Peptides 1994;49:211–216.

    Article  CAS  Google Scholar 

  55. Sano T, Morishita Y, Matsuda Y, Yamada K. Pharmacological profile of HS-142–1, a novel non-peptide atrial natriuretic peptide antagonist of microbial origin. I. Selective inhibition of the actions of natriuretic peptides in anesthetized rats. J Pharmacol Exp Ther 1992;260:825–831.

    PubMed  CAS  Google Scholar 

  56. Zhang PL, Jimenez W, Mackenzie HS, Guo J, Troy JL, Ros J, Angeli P, Arroyo V, Brenner BM. HS-142–1, a potent antagonist of natriuretic peptides in vitro and in vivo. J Am Soc Nephrol 1994;5:1099–1105.

    PubMed  CAS  Google Scholar 

  57. Stevens TL, Wei CM, Aahrus LL, Heublein DM, Kinoshita M, Matsuda Y, Burnett JC Jr. Modulation of exogenous and endogenous atrial natriuretic peptide by a receptor inhibitor. Hypertension 1994;23:613–618.

    PubMed  CAS  Google Scholar 

  58. Sano T, Morishita Y, Yamada K, Matsuda Y. Effects of HS-142–1, a novel non-peptide ANP antagonist, on diuresis and natriuresis induced by acute volume expansion in anesthetized rats. Biochem Biophys Res Commun 1992;182:824–829.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang PL, Mackenzie HS, Troy JL, Brenner BM. Effects of natriuretic peptide receptor inhibition on remnant kidney function in rats. Kidney Int 1994;46:414–420.

    Article  PubMed  CAS  Google Scholar 

  60. Higgins JT Jr. Escape from sodium-retaining effects of deoxycorticosterone in hypotensive and hypertensive dogs. Proc Soc Exp Biol Med 1970;134:768–772.

    PubMed  CAS  Google Scholar 

  61. Yokota N, Bruneau BG, de Bold MLK, de Bold AJ. Atrial natriuretic factor significantly contributes to the mineralocorticoid escape phenomenon. Evidence for a guanylate cyclase-mediated pathway. J Clin Invest 1994;94:1938–1946.

    Article  PubMed  CAS  Google Scholar 

  62. Wada A, Tsutamoto T, Matsuda Y, Kinoshita M. Cardiorenal and neurohumoral effects of endogenous atrial natriuretic peptide in dogs with severe congestive heart failure using a specific antagonist for guanylate cyclase-coupled receptors. Circulation 1994;89:2232–2240.

    PubMed  CAS  Google Scholar 

  63. Zhang PL, Mackenzie HS, Totsune K, Troy JL, Brenner BM. Renal effects of high-dose natriuretic peptide receptor blockade in rats with congestive heart failure. Circ Res 1995;77:1240–1245.

    PubMed  CAS  Google Scholar 

  64. Nishikimi T, Miura K, Minamino N, Takeuchi K, Takeda T. Role of endogenous atrial natriuretic peptide on systemic and renal hemodynamics in heart failure rats. Am J Physiol Heart Circ Physiol 1994;36:H182-H186.

    Google Scholar 

  65. Angeli P, Jimenez W, Arroyo V, Mackenzie HS, Zhang PL, Claria J, Rivera F, Brenner BM, Rodes J. Renal effects of natriuretic peptide receptor blockade in cirrhotic rats with ascites. Hepatology 1994;20:948–954.

    Article  PubMed  CAS  Google Scholar 

  66. Hirata Y, Suzuki Y, Suzuki E, Hayakawa H, Kimura K, Goto A, Omata M, Minamino N, Kangawa K, Matsuo H. Mechanisms underlying the augmented responses of deoxycorticosterone acetate-salt hypertensive rats to neutral endopeptidase inhibitors. J Hypertension 1994;12:367–374.

    CAS  Google Scholar 

  67. Stevens TL, Burnett Jr JC, Kinoshita M, Matsuda Y, Redfield MM. A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction. J Clin Invest 1995;95:1101–1108.

    Article  PubMed  CAS  Google Scholar 

  68. Silberbach M, Woods LL, Hohimer R, Shiota T, Matsuda Y, Davis LE. Role of endogenous atrial natriuretic peptide in chronic anemia in the ovine fetus: effects of a non-peptide antagonist for atrial natriuretic peptide receptor. Pediatric Res 1995;38:722–728.

    Article  CAS  Google Scholar 

  69. Mogensen CE. Glomerular filtration rate and renal plasma flow in short-term and long-term juvenile diabetes mellitus. Scand J Clin Lab Invest 1971;28:91–100.

    Article  PubMed  CAS  Google Scholar 

  70. Ortola F, Ballermann BJ, Anderson S, Mendez RE, Brenner BM. Elevated plasma atrial natriuretic peptide levels in diabetic rats—potential mediator of hyperfiltration. J Clin Invest 1987;80:670–674.

    Article  PubMed  CAS  Google Scholar 

  71. Kikkawa R, Haneda M, Sakamoto K, Koya D, Shikano T, Nakanishi S, Matsuda Y, Shigeta Y. Antagonist for atrial natriuretic peptide receptors ameliorates glomerular hyperfiltration in diabetic rats. Biochem Biophys Res Commun 1993;193:700–705.

    Article  PubMed  CAS  Google Scholar 

  72. Sakamoto K, Kikkawa R, Haneda M, Shigeta Y. Prevention of glomerular hyperfiltration in rats with streptozotocin-induced diabetes by an atrial natriuretic peptide receptor antagonist. Diabetologia 1995;38:536–542.

    Article  PubMed  CAS  Google Scholar 

  73. Zhang PL, Mackenzie HS, Troy JL, Brenner BM. Effects of an atrial natriuretic peptide receptor antagonist on glomerular hyperfiltration in diabetic rats. J Am Soc Nephrol 1994;4:1564–1570.

    PubMed  CAS  Google Scholar 

  74. Hirata Y, Suzuki Y, Hayakawa H, Suzuki E, Kimura K, Goto A, Kangawa K, Matsuo H, Omata M. Participation of endogenous atrial natriuretic peptide in the regulation of urinary protein excretion in experimental diabetic rats. Clin Sci 1995;88:413–419.

    PubMed  CAS  Google Scholar 

  75. Ehardt JS, Nelson SH, Hinder F, Brooke M, Traber LD, Traber DL. Effects of an atrial natriuretic peptide (ANP) inhibitor, HS-142–1, in isolated blood vessels from septic sheep. FASEB J 1995;9:A888.

    Google Scholar 

  76. Rutherford RAD, Matsuda Y, Wilkins MR, Polak JM, Wharton J. Identification of renal natriuretic peptide receptor subpopulations by use of the non-peptide antagonist, HS-142–1. Br J Pharmacol 1994;113:931–939.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this chapter

Cite this chapter

Matsuda, Y. (1997). Design and Utilization of Natriuretic Peptide Antagonists. In: Samson, W.K., Levin, E.R. (eds) Natriuretic Peptides in Health and Disease. Contemporary Endocrinology, vol 5. Humana Press. https://doi.org/10.1007/978-1-4612-3960-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3960-4_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8441-3

  • Online ISBN: 978-1-4612-3960-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics