Skip to main content

Observations on the Metabolism and Cellular Interactions of Lactoferrin

  • Chapter
Lactoferrin

Part of the book series: Experimental Biology and Medicine ((EBAM,volume 28))

  • 315 Accesses

Summary

When lactoferrin (Lf) is tagged with a residualizing label and injected intravenously in rats, the label is recovered almost exclusively with the liver. The plasma clearance curve of Lf comprises two components: a rapid initial one, followed by a slower one. Analyses of plasma samples by gel filtration suggest the slower component to be the result of complex formation between Lf and plasma proteins. The possibility is raised that these complexes are not targeted to the same cells as uncomplexed Lf. Since hepatic heparan sulfate proteoglycan binds strongly to Lf, it seems likely that this plasmalemma constituent serves as a nonspecific binding site for Lf. Only minute amounts of Lf are absorbed from the peritoneal cavity. Overall, the metabolic observations indicate that despite a close structural relatedness between Lf and transferrin (Tf), the functions of both proteins differ greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonsen, S., Wiggers, P., Dalhoj, J., and Blaabjerg, O. (1993) An enzyme-linked immunosorbent assay for plasma lactoferrin. Concentrations in 362 healthy, adult blood donors. Scand. J. Clin. Lab. Invest. 53, 133–144.

    Article  CAS  Google Scholar 

  • Bennett, R. M. and Kokocinski, T. (1979) Lactoferrin turnover in man. Clin. Sci. 57, 453–460.

    CAS  Google Scholar 

  • Bennett, R. M, Davis, J., Campbell, S., and Portnoff, S. (1983) Lactoferrin binds to cell membrane DNA. Association of surface DNA with an enriched population of B cells and monocytes. J. Clin. Invest. 71, 611–618.

    Article  CAS  Google Scholar 

  • Brock, J. H. (1985) Transferrins, in Metalloproteins, part 2 (Harrison, P. M., ed.), Verlag Chemie, Weinheim, pp. 183–262.

    Google Scholar 

  • Courtoy, P. J., Moguilevsky, N., Retegui, L. A., Castracane, C. E., and Masson, P. L. (1984) Uptake of lactoferrin by the liver. II. Endocytosis by sinusoidal cells. Lab. Invest. 50, 329–334.

    CAS  Google Scholar 

  • Cuatrecasas, P. and Hollenberg, M. D. (1976) Membrane receptors and hormone action. Adv. Prot. Chem. 30, 61–70.

    Google Scholar 

  • Debanne, M. T., Regoeczi, E., Sweeney, G. D., and Krestynski, F. (1985) Interaction of human lactoferrin with the rat liver. Am. J. Physiol. 248, G463–G469.

    CAS  Google Scholar 

  • Furmanski, P. and Li, Z.-P (1990) Multiple forms of lactoferrin in normal and leukemic human granulocytes. Exp. Hematol. 18, 932–935.

    CAS  Google Scholar 

  • Furmanski, P., Li, Z.-P, Fortuna, M. B., Swamy, C. V. B., and Das, M. R. (1989) Multiple molecular froms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. J. Exp. Med. 170, 415–429.

    Article  CAS  Google Scholar 

  • Hekman, A. (1971) Association of lactoferrin with other proteins as demonstrated by changes in electrophoretic mobility. Biochim. Biophys. Acta 251, 380–387.

    CAS  Google Scholar 

  • Hu, W.-L. and Regoeczi, E. (1992) Hepatic heparan sulphate proteoglycan and the recycling of transferrin. Biochem. Cell Biol. 70, 535–538.

    CAS  Google Scholar 

  • Hu, W.-L., Chindemi, P. A., and Regoeczi, E. (1992) The perfused liver is capable of producing all transferrin glycan variants found in the sera of intact rats. Hepatology 16, 1049–1054.

    Article  CAS  Google Scholar 

  • Hu, W.-L., Regoeczi, E., Chindemi, P. A., and Bolyos, M. (1993) Lactoferrin interferes with the uptake of iron from transferrin and asialotransferrin by the rat liver. Am. J. Physiol. 264, G112-G117.

    CAS  Google Scholar 

  • Huettinger, M., Retzek, H., Eder, M., and Goldenberg, H. (1988) Characteristics of chylomicron remnant uptake into rat liver. Clin. Biochem. 21, 87–92.

    Article  CAS  Google Scholar 

  • Huettinger, M., Retzek, H., Hermann, M., and Goldenberg, H. (1992) Lactoferrin specifically inhibits endocytosis of chylomicron remnants but not a-macroglobulin. J. Biol. Chem. 267, 18,551–18,557.

    Google Scholar 

  • Imber, M. J. and Pizzo, S. V. (1983) Clearance and binding of native and defucosylated lactoferrin. Biochem. J. 212, 249–257.

    CAS  Google Scholar 

  • Karle, H., Hansen, N. E., Malmquist, J., Karle, A. K., and Larsson, I. (1979) Turnover of human lactoferrin in the rabbit. Scand. J. Haematol. 23, 303–312.

    Article  CAS  Google Scholar 

  • Lyon, M. and Gallagher, J. T. (1991) Purification and partial characterization of the major cell-associated heparan sulphate proteoglycan of rat liver. Biochem. J. 273, 415–422.

    CAS  Google Scholar 

  • Mason, D. Y. and Taylor, C. R. (1978) Distribution of transferrin, ferritin, and lactoferrin in human tissues. J. Clin. Pathol. 31, 316–327.

    Article  CAS  Google Scholar 

  • McAbee, D. D. and Esbensen, K. (1991) Binding and endocytosis of apo and holo-lactoferrin by isolated rat hepatocytes. J. Biol. Chem. 266, 23,624–23,631.

    Google Scholar 

  • Pittman, R. C, Carew, T. E., Glass, C. K., Green, S. R., Taylor, C. A., and Attie, A. D. (1983) A radioiodinated, intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo. Biochem. J. 212, 791–800.

    CAS  Google Scholar 

  • Regoeczi, E. (1983) Iodogen-catalyzed iodination of transferrin. Int. J. Peptide Protein Res. 22, 422–433.

    Article  CAS  Google Scholar 

  • Regoeczi, E., Chindemi, P. A., Debanne, M. T., and Prieels, J.-P. (1985) Lactoferrin catabolism in the rat liver. Am. J. Physiol 248, G8–G14.

    CAS  Google Scholar 

  • Regoeczi, E., Zaimi, O., Chindemi, P. A., and Charlwood, P. A. (1989) Absorption of plasma proteins from peritoneal cavity of normal rats. Am. J. Physiol. 256, E447–E452.

    CAS  Google Scholar 

  • Regoeczi, E., Chindemi, P. A., Bolyos M., and Hu, W.-L. (1994a) Observations with a residualizing label in use to map the catabolic sites of plasma proteins. Biochem. Cell Biol. 72, 275–281.

    Article  CAS  Google Scholar 

  • Regoeczi, E., Chindemi, P. A., and Hu, W.-L. (1994b) Transport of lactoferrin from blood to bile in the rat. Hematology 19, 1476–1482.

    CAS  Google Scholar 

  • Rosenmund, A., Kuyas, C, and Haeberli, A. (1986) Oxidative radio-iodination damage to human lactoferrin. Biochem. J. 240, 239–245.

    CAS  Google Scholar 

  • Rümke, P., Visser, D., Kwa, H. G., and Hart, A. A. M. (1971) Radio-immuno assay of lactoferrin in blood plasma of breast cancer patients, lactating and normal women; prevention of false high levels caused by leakage from neutrophile leucocytes in vitro. Folia Med. Neerl. 14, 156–168.

    Google Scholar 

  • Spik, G., Coddeville, B., and Montreuil, J. (1988) Comparative study of the primary structures of sero-, lacto and ovotransferrin glycans from different species. Biochimie 70, 1459–1469.

    Article  CAS  Google Scholar 

  • Vallabhajosula, S. and Goldsmith, S. J. (1983) Non-specific binding of transferrin and lactoferrin to polystyrene culture tubes: role of the radioligand. J. Nucl. Med. 8, 223–226.

    CAS  Google Scholar 

  • Watanabe, T., Nagura, H., Watanabe, K., and Brown, W. R. (1984) The binding of human milk lactoferrin to immunoglobulin A. FEBS Lett. 168, 203–207.

    Article  CAS  Google Scholar 

  • Ziere, G. J., Bijsterbosch, M. K., and van Berkel, T. J. C. (1993) Removal of 14 N-terminal amino acids of lactoferrin enhances its affinity for parenchymal liver cells and potentiates the inhibition of ß-very low density lipoprotein binding. J. Biol. Chem. 168, 27,069–27,075.

    Google Scholar 

  • Ziere, G. J., van Dijk, M. C. M., Bijsterbosch, M. K., and van Berkel, T. J. C. (1992) Lactoferrin uptake by the liver. Characterization of the recognition site and effect of selective modification of arginine residues. J. Biol Chem. 267, 11,229–11,235.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this chapter

Cite this chapter

Regoeczi, E. (1997). Observations on the Metabolism and Cellular Interactions of Lactoferrin. In: Hutchens, T.W., Lönnerdal, B. (eds) Lactoferrin. Experimental Biology and Medicine, vol 28. Humana Press. https://doi.org/10.1007/978-1-4612-3956-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3956-7_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-8439-0

  • Online ISBN: 978-1-4612-3956-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics