Lactoferrin pp 277-301 | Cite as

Bacterial Lactoferrin Receptors in the Neisseriaceae

  • Robert A. Bonnah
  • Rong-hua Yu
  • Anthony B. Schryvers
Part of the Experimental Biology and Medicine book series (EBAM, volume 28)


In order to survive in the iron-restricted environment of the host, bacteria have evolved efficient mechanisms for acquisition of iron from the host’s glycoproteins, transferrin (Tf) and lactoferrin (Lf). Tf receptors, which are involved in acquisition of iron specifically from host Tf, have been identified in a number of important human and veterinary pathogens from the families Neisseriaceae and Pasteurellaceae. In contrast, receptors for the host’s Lf have only been demonstrated in Neisseriaceae. Polymerase chain reaction (PCR)-based approaches for identification of the Lf receptor genes can help overcome the limitations of growth studies, and binding and affinity isolation assays for confirming the presence of the Lf receptor-mediated pathway Affinity isolation studies have demonstrated that, contrary to previous conclusions, the composition of the Lf receptor is similar to that of the Tf receptor (Tbp1 and Tbp2) and includes two proteins, Lbp1 (Tbp1 homolog) and Lbp2 (Tbp2 homolog). The parallels in composition of receptors and organization of the genetic loci for the Tf and Lf receptors enable us to propose a model for the structure and organization of the iron-acquisition pathway. Although prior studies have provided some insights into ligand-receptor interaction, further analysis will need to incorporate modifications in order to include assessment of binding by Lbp2 and will most effectively be addressed by analysis of recombinant chimeric proteins.


Neisseria Gonorrhoeae Neisseria Meningitidis Iron Acquisition Human Lactoferrin Isogenic Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcantara, J., Padda, J. S., and Schryvers, A. B. (1992) The N-linked oligosaccharides of human lactoferrin are not required for binding to bacterial lactoferrin receptors. Can. J. Microbiol 38, 1202–1205.CrossRefGoogle Scholar
  2. Anderson, J. A., Sparling, P. F., and Cornelissen, C. N. (1994) Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J. Bacteriol. 176, 3162–3170.Google Scholar
  3. Berish, S. A., Subbarao, S., Chen, C.-Y., Trees, D. L., and Morse, S. A. (1993) Identification and cloning of a fur homolog from Neisseria gonorrhoeae. Infect. Immun. 61, 4599–4606.Google Scholar
  4. Campagnari, A. A., Shanks, K. L., and Dyer, D. W. (1994) Growth of Moraxella catarrhalis with human transferrin and lactoferrin: expression of iron-repressible proteins without siderophore production. Infect. Immun. 62, 4909–4914.Google Scholar
  5. Chen, C.-Y., Berish, S. A., Morse, S. A., and Mietzner, T. A. (1993) The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin. Mol. Microbiol. 10, 311–318.CrossRefGoogle Scholar
  6. Cornelissen, C. N., Biswas, G. D., Tsai, J., Paruchuri, D. K., Thompson, S. A., and Sparling, P. F. (1992) Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J. Bacteriol. 174, 5788–5797.Google Scholar
  7. Cregg, J. M., Vedvick, T. S., and Raschke, W. C. (1993) Recent advances in the expression of foreign genes in Piscia pastoris. BioTechnology 11, 905–910.CrossRefGoogle Scholar
  8. Crosa, J. H. (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Lett. 53, 517–530.Google Scholar
  9. Doring, G., Pfestorf, M., Botzenhart, K., and Abdallah, M. A. (1988) Impact of proteases on iron uptake of Pseudomonas aeruginosa pyoverdin from transferrin and lactoferrin. Infect. Immun. 56, 291–293.Google Scholar
  10. Dougherty, T. J., Asmus, A., and Tomasz, A. (1979) Specificity of DNA uptake in genetic transformation of gonococci. Biochem. Biophys. Res. Commun. 86, 97–104.CrossRefGoogle Scholar
  11. Erdei, J., Forsgren, A., and Naidu, A. S. (1994) Lactoferrin binds to porins OmpF and OmpC in Escherichia coli. Infect. Immun. 62, 1236–1240.Google Scholar
  12. Gerlach, G. F., Anderson, C., Potter, A. A., Klashinsky, S., and Willson, P. J. (1992a) Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae. Infect. Immun. 60, 892–898.Google Scholar
  13. Gerlach, G. F., Klashinsky, S., Anderson, C., Potter, A. A., and Willson, P. J. (1992b) Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates. Infect. Immun. 60, 3253–3261.Google Scholar
  14. Gonzalez, G. C., Caamano, D. L., and Schryvers, A. B. (1990) Identification and characterization of a porcine-specific transferrin receptor in Actinobacillus pleuropneumoniae. Mol. Microbiol. 4, 1173–1179.CrossRefGoogle Scholar
  15. Gonzalez, G. C., Yu, R.-H., Rosteck, P., and Schryvers, A. B. (1995) Characterization of the Actinobacillus pleuropneumoniae transferrin receptor genes and their products. Microbiology 141, 2405–2416.CrossRefGoogle Scholar
  16. Gray-Owen, S. D., Loosemore, S., and Schryvers, A. B. (1995) Identification and characterization of genes encoding the human transferrin binding proteins from Haemophilus influenzae. Infect. Immun. 63, 1201–1210.Google Scholar
  17. Guerinot, M. L. (1994) Microbial iron transport. Ann. Rev. Microbiol. 48, 743–772.CrossRefGoogle Scholar
  18. Irwin, S. (1994) Neisseria transferrin binding proteins. Thesis, Department of Microbiology and Infectious Diseases, University of Calgary.Google Scholar
  19. Irwin, S. W., Averill, N., Cheng, C. Y., and Schryvers, A. B. (1993) Preparation and analysis of isogenic mutants in the transferrin receptor protein genes, tbp1 and tbp2, from Neisseria meningitidis. Mol. Microbiol. 8, 1125–1133.CrossRefGoogle Scholar
  20. Irwin, S. W., Yu, R.-H., Alcantara, J., and Schryvers, A. B. (1994) Transferrin and lactoferrin receptor proteins of Neisseria meningitidis, in Pathobiology and Immunobiology of Neisseriaceae (Conde-Glez, C. J., Morse, S., Rice, P., Sparling, F., and Calderon, E., eds.), Proceedings of the VIII International Pathogenic Neisseria Conference, Cuernavaca, Mexico, pp. 392–398.Google Scholar
  21. Jarosik, G. P., Maciver, I., and Hansen, E. J. (1995) Utilization of trans-ferrin-bound iron by Haemophilus influenzae requires an intact tonB gene. Infect. Immun. 63. Google Scholar
  22. Karkhoff-Schweizer, R. R., Schryvers, A. B., and Schweizer, H. P. (1994) Cloning and sequence analysis of the fur gene encoding an iron-regulatory protein of Neisseria meningitidis. Gene 141, 139–140.CrossRefGoogle Scholar
  23. Legrain, M., Jacobs, E., Irwin, S. W., Schryvers, A. B., and Quentin-Millet, M. J. (1993) Molecular cloning and characterization of Neisseria meningitidis genes encoding the transferrin binding proteins Tbp1 and Tbp2. Gene 130, 73–80.CrossRefGoogle Scholar
  24. Lissolo, L., Dumas, P., Maitre, G., and Quentin-Millet, M. J. (1994) Preliminary biochemical characterization of transferrin binding proteins from Neisseria meningitidis, in Pathobiology and Immunobiology of Neisseriaceae (Conde-Glez, C. J., Morse, S., Rice, P., Sparling, F., and Calderon, E., eds.), Proceedings of the VIII International Pathogenic Neisseria Conference, Cuernavaca, Mexico, pp. 399–405.Google Scholar
  25. Lydon, J. P., O’Malley, B. R., Saucedo, O., Lee, T., Headon, D. R., and Conneely, O. M. (1992) Nucleotide and primary amino acid sequence of porcine lactoferrin. Biochim. Biophys. Acta Gene Struct. Expression 1132, 97–99.CrossRefGoogle Scholar
  26. Maciver, I. and Hansen, E. J. (1994) Identification of a positive regulatory factor involved in expression of transferrin-binding activity by Haemophilus influenzae. Amer. Soc. Micro. Ann. Mtg., New Orleans, LA, abstract B162.Google Scholar
  27. McKenna, W. R., Mickelsen, P. A., Sparling, P. F., and Dyer, D. W. (1988) Iron uptake from lactoferrin and transferrin by Neisseria gonorrhoeae. Infect. Immun. 56, 785–791.Google Scholar
  28. Mead, P. E. and Tweedie, J. W. (1990) cDNA and protein sequence of bovine lactoferrin. Nucleic Acids Res. 18, 7167CrossRefGoogle Scholar
  29. Mickelsen, P. A., Blackman, E., and Sparling, P. F. (1982) Ability of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species to obtain iron from lactoferrin. Infect. Immun. 35, 915–920.Google Scholar
  30. Ogunnariwo, J. A. and Schryvers, A. B. (1990) Iron acquisition in Pasteurella haemolytica: expression and identification of a bovine-specific transferrin receptor. Infect. Immun. 58, 2091–2097.Google Scholar
  31. Ogunnariwo, J. A. and Schryvers, A. B. (1992) Correlation between the ability of Haemophilus paragallinarum to acquire ovotransferrin-bound iron and the expression of ovotransferrin-specific receptors. Avian Dis. 36, 655–663.CrossRefGoogle Scholar
  32. Ogunnariwo, J. A., Cheng, C. Y., Ford, J. A., and Schryvers, A. B. (1990) Response of Haemophilus somnus to iron limitation: expression and identification of a bovine-specific transferrin receptor. Microb. Pathogen. 9, 397–406.CrossRefGoogle Scholar
  33. Ogunnariwo, J. A., Alcantara, J., and Schryvers, A. B. (1991) Evidence for non-siderophore-mediated acquisition of transferrin-bound iron by Pasteurella multocida. Microb. Pathogen. 11, 47–56.CrossRefGoogle Scholar
  34. Pettersson, A., Van der Ley, P., Poolman, J. T., and Tommassen, J. (1993) Molecular characterization of the 98-kilodalton iron-regulated outer membrane protein of Neisseria meningitidis. Infect. Immun. 61, 4724–4733.Google Scholar
  35. Pettersson, A., Maas, A., and Tommassen, J. (1994a) Identification of the iroA gene product of Neisseria meningitidis as a lactoferrin receptor. J. Bacteriol. 176, 1764–1766.Google Scholar
  36. Pettersson, A., Klarenbeek, V., van Deurzen, J., Poolman, J. T., and Tommassen, J. (1994b) Molecular characterization of the structural gene for the lactoferrin receptor of the meningococcal strain H44/76. Microb. Pathogen. 17, 395–408.CrossRefGoogle Scholar
  37. Redhead, K., Hill, T., and Chart, H. (1987) Interaction of lactoferrin and transferrins with the outer membrane of Bordetella pertussis. J. Gen. Microbiol. 133, 891–898.Google Scholar
  38. Rutz, J. M., Lui, J., Lyons, J. A., Goranson, J., Armstrong, S. K., Mcintosh, M. A., Feix, J. B., and Klebba, P. E. (1992) Formation of gated channel by a ligand-specific transport protein in the bacterial outer membrane. Science 258, 471–475.CrossRefGoogle Scholar
  39. Sanders, J. D., Cope, L. D., and Hansen, E. J. (1994) Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect. Immun. 62, 4515–4525.Google Scholar
  40. Schryvers, A. B. (1989) Identification of the transferrin- and lactoferrin-binding proteins in Haemophilus influenzae. J. Med. Microbiol. 29, 121–130.CrossRefGoogle Scholar
  41. Schryvers, A. B. and Gonzalez, G. C. (1989) Comparison of the abilities of different protein sources of iron to enhance Neisseria meningitidis infection in mice. Infect. Immun. 57, 2425–2429.Google Scholar
  42. Schryvers, A. B. and Gonzalez, G. C. (1990) Receptors for transferrin in pathogenic bacteria are specific for the host’s protein. Can. J. Microbiol. 36, 145–147.CrossRefGoogle Scholar
  43. Schryvers, A. B. and Gray-Owen, S. (1992) Iron acquisition in Haemophilus influenzae: receptors for human transferrin. J. Infect. Dis. 165(Suppl. 1), S103-S104.CrossRefGoogle Scholar
  44. Schryvers, A. B. and Lee, B. C. (1989) Comparative analysis of the transferrin and lactoferrin binding proteins in the family Neisseriaceae. Can. J. Microbiol. 35, 409–415.CrossRefGoogle Scholar
  45. Schryvers, A. B. and Morris, L. J. (1988a) Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol. Microbiol. 2, 281–288.CrossRefGoogle Scholar
  46. Schryvers, A. B. and Morris, L. J. (1988b) Identification and characterization of the human lactoferrin-binding protein from Neisseria meningitidis. Infect. Immun. 56, 1144–1149.Google Scholar
  47. Schweizer, H. P. (1993) Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15, 831–833.Google Scholar
  48. Stowell, K. M., Rado, T. A., Funk, W. D., and Tweedie, J. W. (1991) Expression of cloned human lactoferrin in baby-hamster kidney cells. Biochem. J. 276, 349–355.Google Scholar
  49. Thomas, C. E. and Sparling, P. F. (1994) Identification and cloning of a fur homologue from Neisseria meningitidis. Mol. Microbiol. 11, 725–737.CrossRefGoogle Scholar
  50. Tryon, V. V. and Baseman, J. B. (1987) The acquisition of human lactoferrin by Mycoplasma pneumoniae. Microb. Pathogen. 3, 437–443.CrossRefGoogle Scholar
  51. Ward, P. P., May, G. S., Headon, D. R., and Conneely, O. M. (1992) An inducible expression system for the production of human lactoferrin in Aspergillus nidulans. Gene 122, 219–223.CrossRefGoogle Scholar
  52. Yu, R.-H., Gray-Owen, S. D., Ogunnariwo, J., and Schryvers, A. B. (1992) Interaction of ruminant transferrin receptors in bovine isolates of Pasteurella haemolytica and Haemophilus somnus. Infect. Immun. 60, 2992–2994.Google Scholar
  53. Yu, R.-H. and Schryvers, A. B. (1993a) Regions located in both the N-lobe and C-lobe of human lactoferrin participate in the binding interaction with bacterial lactoferrin receptors. Microb. Pathogen. 14, 343–353.CrossRefGoogle Scholar
  54. Yu, R.-H. and Schryvers, A. B. (1993b) The interaction between human transferrin and transferrin binding protein 2 from Moraxella (Bran-hamella) catarrhalis differs from that of other human pathogens. Microb. Pathogen. 15, 443–445.CrossRefGoogle Scholar
  55. Yu, R.-H. and Schryvers, A. B. (1994) Transferrin receptors on ruminant pathogens vary in their interaction with the C-lobe and N-lobe of ruminant transferrins. Can. J. Microbiol. 40, 532–540.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Robert A. Bonnah
  • Rong-hua Yu
  • Anthony B. Schryvers

There are no affiliations available

Personalised recommendations