Nucleic Acid Amplification Methods for Identifying Cytogenetic Abnormalities

  • Timothy J. O’Leary
Part of the Contemporary Biomedicine book series (CB, volume 13)

Abstract

The recognition that malignant neoplasms result from one or more genetic aberrations, together with the development of improved methods for identifying these abnormalities, has given rise to a new discipline, typically referred to as “molecular pathology.” The role of molecular methods in routine diagnosis remains ambiguous, however, because there is a stunning array of different molecular methods for identifying “the same” abnormalities, and because the relationships among the results of “molecular” assays, traditional cytogenetics, and classical histology are incompletely defined.

Keywords

Lymphoma Leukemia Electrophoresis Oncol Sarcoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reid AH, Cunningham RE, Frizzera G, O’Leary TJ: bcl-2 rearrangement in Hodgkin’s disease. Results of polymerase chain reaction, flow cytometry, and sequencing on formalin-fixed, paraffin-embedded tissue. Am J Pathol 142:395–402, 1993.PubMedGoogle Scholar
  2. 2.
    Nuovo GJ: PCRIn Situ Hybridization: Protocols and Applications. New York: Raven, 1992.Google Scholar
  3. 3.
    Kwoh DY, Davis GR, Whitfield KM, Chapelle HL, DiMichele LJ, Gingeras TR: Transcription based amplification system and detection of amplified human immunodeficiency virus type I with a bead-based sandwich hybridization format. Proc Natl Acad Sci USA 86:1173–1177, 1989.PubMedCrossRefGoogle Scholar
  4. 4.
    Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR: Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA 87:1874–1878, 1990.PubMedCrossRefGoogle Scholar
  5. 5.
    Compton J: Nucleic acid sequence based amplification. Nature 350:91, 92, 1991.Google Scholar
  6. 6.
    Walker GT, Little MC, Nadeau JG, Shank D: Isothermal in vitro amplification of DNA by restriction enzyme/DNA polymerase system. Proc Natl Acad Sci USA 89:392–396, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Lizardi PM, Guerra CE, Lomeli H, Tussie-Luna I, Kramer FR: Exponential amplification of recombinant-RNA hybridization probes. Bio/Technology 6:1197–1202, 1988.CrossRefGoogle Scholar
  8. 8.
    Wu DY, Wallace RB: The ligase amplification reaction (LAR): amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4:560–569, 1989.PubMedCrossRefGoogle Scholar
  9. 9.
    Barany F: The ligase chain reaction in a PCR world. PCR Methods Appls 1:5–16, 1991.Google Scholar
  10. 10.
    O’Leary TJ, Brindza L, Kant JA, Kaul K, Sperry L, Stetler-Stevenson MA: Immunoglobulin and T-Cell Receptor Gene Rearrangement Assays: Proposed Guideline. National Committee on Clinical Laboratory Standards Document MM2-P (Vol. 14. No. 13). Lancaster, PA: National Committee on Clinical Laboratory Standards, 1994.Google Scholar
  11. 11.
    Spadoro JP, Dragon E: Quality control of the polymerase chain reaction. In: Farkas DH, (ed.), Molecular Biology and Pathology: a Guidebook for Quality Control. San Diego, CA: Academic, 1993.Google Scholar
  12. 12.
    Enns RK, Bromley SE, Day SP, Inderlied CB, Madej RM, Nolte FS, Nutter C, Persing DH, Tenover FC: Molecular Diagnostic Methods for Infectious Diseases: Proposed Guideline. National Committee on Clinical Laboratory Standards Document MM2-P (Vol. 14), No. 4. Lancaster, PA: National Committee on Clinical Laboratory Standards, 1994.Google Scholar
  13. 13.
    Cline MJ: The molecular basis of leukemia. N Engl J Med 330:328–336, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Clark SS, McLaughlin J, Crist WM, Witte ON: Unique forms of the abl tyrosine kinase distinguish Ph-positive CML from Ph-positive ALL. Science 235:85–88, 1987.PubMedCrossRefGoogle Scholar
  15. 15.
    Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, McCormick FP: Diagnosis of chronic myeloid and acute lymphocytic leukemia by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 85:5698–5702, 1988.PubMedCrossRefGoogle Scholar
  16. 16.
    Kantarjian H, Talpaz M, Estey E, Ku S, Kurzrock R: What is the contribution of molecular studies to the diagnosis of BCR-ABL-positive disease in adult acute leukemia? Am J Med 96:133–138, 1994.PubMedCrossRefGoogle Scholar
  17. 17.
    Crisan D, Farkas DH: Bone marrow biopsy imprint preparations: use for molecular diagnostics in leukemias. Ann Clin Lab Sci 23:407–422, 1993.PubMedGoogle Scholar
  18. 18.
    Gehly GB, Bryant EM, Lee AM, Kidd PG, Thomas ED: Chimeric BCR-ABL messenger RNA as a marker for minimal residual disease in patients transplanted for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 78:458–165, 1991.PubMedGoogle Scholar
  19. 19.
    Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML: The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 77:687–693, 1991.PubMedGoogle Scholar
  20. 20.
    Izraeli S, Kovar H, Gadner H, Lion T: Unexpected heterogeneity in E2A/PBX1 fusion messenger RNA detected by the polymerase chain reaction in pediatric patients with acute lymphoblastic leukemia. Blood 80:1413–1417, 1992.PubMedGoogle Scholar
  21. 21.
    Devaraj PE, Foroni L, Kitra-Roussos V, Seeker-Walker LM: Detection of BCR-ABL and E2A-PBX1 fusion genes by RT-PCR in acute lymphoblastic leukaemia with failed or normal cytogenetics. Br J Haematol 89: 349–355, 1995.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen CS, Sorensen PH, Domer PH, Reaman GH, Korsmeyer SJ, Heerema NA, Hammond GD, Kersey JH: Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood 81:2386–2393, 1993.PubMedGoogle Scholar
  23. 23.
    Biondi A, Rambaldi A, Rossi V, Elia L, Caslini C, Basso G, Battista R, Barbui T, Mandelli F, Masera G, et al.: Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;l 1) translocation. Blood 82:2943–2947, 1993.PubMedGoogle Scholar
  24. 24.
    Downing JR, Head DR, Raimondi SC, Carroll AJ, Curcio-Brint AM, Motroni TA, Hulshof MG, Pullen DJ, Domer PH: The der(11)-encoded MLL/AF-4 fusion transcript is consistently detected in t(4;11)(q21;q23)-containing acute lymphoblastic leukemia. Blood 83:330–335, 1994.PubMedGoogle Scholar
  25. 25.
    Nowell PC, Hungerford DA: A minute chromosome in human chronic granulocytic leukemia. Science 132:1497–1501, 1960.Google Scholar
  26. 26.
    Shtivelman E, Lifshitz B, Gale RP, Canaani E: Fused transcript of abl and bcr genes in chronic myelocytic leukemia. Nature 300:765–767, 1985.Google Scholar
  27. 27.
    Maurer J, Janssen JWG, Thiel E, van Denderen J, Ludwig WD, Aydemir U, Heinz B, Fonatsch C, Harbott J, Reiter A, Riehm H, Hoelzer D, Bartram CR: Detection of chimeric BCR-ABL genes in acute lymphoblastic leukemia by the polymerase chain reaction. Lancet 337:1055–1058, 1991.PubMedCrossRefGoogle Scholar
  28. 28.
    Bloomfield CD, Arthur DC, Frizzera G, Levine EG, Peterson BA, Gajl-Peczalska KJ: Nonrandom chromosome abnormalities in lymphoma. Cancer Res 43:2975–2984, 1983.PubMedGoogle Scholar
  29. 29.
    Yunis JJ, Frizzera G, Oken MM, McKenna J, Theologides A, Arnesen M: Multiple recurrent genomic defects in follicular lymphoma. A possible model for cancer. N Engl J Med 8;316(2):79–84, 1987.CrossRefGoogle Scholar
  30. 30.
    Yunis JJ, Mayer MG, Arnesen MA, Aeppli DP, Oken MM, Frizzera G: bcl-2 and other genomic alterations in the prognosis of large-cell lymphoma N Engl J Med 320:1047–1054, 1989.Google Scholar
  31. 31.
    Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM: The t(14;18) translocation involved in B-cell neoplasms results from mistakes in VDJ joining. Science 229:1390–1393, 1985.PubMedCrossRefGoogle Scholar
  32. 32.
    Hua C, Zorn S, Jensen JP, et al.: Consequences of the t(14;18) chromosomal translocation in follicular lymphoma: deregulated expression of a chimeric and mutated BCL-2 gene. Oncogene Res 2:263–275, 1988.PubMedGoogle Scholar
  33. 33.
    Hockenberry D, Nunez G, Millman C, Schreiber RD, Korsmeyer S: Bcl-2, an inner mitochondrial membrane protein blocks programmed cell death. Nature 348:334–336, 1990.CrossRefGoogle Scholar
  34. 34.
    Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AI, Korsmeyer SJ: Cloning the chromosomal breakpoint to t(14;18) human lymphoma. Clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899–906, 1985.PubMedCrossRefGoogle Scholar
  35. 35.
    Bakhshi A, Wright JJ, Graninger W, Seto M, Owens J, Cossman J, Jensen JP, Goldman P, Korsmeyer SJ: Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 84:2396–2400, 1987.PubMedCrossRefGoogle Scholar
  36. 36.
    Cleary ML, Sklar J: Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 82:7439–7443, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    Cleary ML, Smith SD, Sklar J: Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47:19–28, 1986.PubMedCrossRefGoogle Scholar
  38. 38.
    Weiss LM, Warnke RA, Sklar J, Cleary ML: Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 317:1185–1189, 1987.PubMedCrossRefGoogle Scholar
  39. 39.
    Ngan BY, Nourse J, Cleary ML: Detection of chromosomal translocation t(14;18) within the minor cluster region of bcl-2 by polymerase chain reaction and direct genomic sequencing of the enzymatically amplified DNA in follicular lymphomas. Blood 73:1759–1762, 1989.PubMedGoogle Scholar
  40. 40.
    Ladanyi M, Wang S: Detection of rearrangements of the BCL2 major breakpoint region in follicular lymphomas. Correlation of polymerase chain reaction results with Southern blot analysis. Diagn Mol Pathol 1:31–35, 1992.PubMedCrossRefGoogle Scholar
  41. 41.
    Stetler-Stevenson M, Raffeld M, Cohen P, Cossman J: Detection of occult follicular lymphoma by specific DNA amplification. Blood 72:1822–1825, 1988.Google Scholar
  42. 42.
    Lee MS, Chang KS, Cabanillas F, Freireich EJ, Trujillo JM, Stass SA: Detection of minimal residual cells carrying the t(14;18) by DNA sequence amplification. Science 237:175–178, 1987.PubMedCrossRefGoogle Scholar
  43. 43.
    Sklar J: Polymerase chain reaction. The molecular microscope of residual disease. J Clin Oncol 9:1521–1524, 1991.PubMedGoogle Scholar
  44. 44.
    Berinstein NL, Jamal HH, Kuznjiar B, Klock RJ, Reis MD: Sensitive and reproducible detection of occult disease in patients with follicular lymphoma by PCR amplification of t(14;18) both pre- and post-treatment. Leukemia 7:113–119, 1993.PubMedGoogle Scholar
  45. 45.
    Berinstein NL, Reis MD, Ngan BY, Sawka CA, Jamal HH, Kuzniar B: Detection of occult lymphoma in the peripheral blood and bone marrow of patients with untreated early-stage and advanced-stage follicular lymphoma. J Clin Oncol 11:1344–1352, 1993.PubMedGoogle Scholar
  46. 46.
    Lambrechts AC, Hupkes PE, Dorssers LC, van’t Veer MB: Translocation (14;18)-positive cells are present in the circulation of the majority of patients with localized (stage I and II) follicular non-Hodgkin’s lymphoma. Blood 82:2510–2516, 1993.PubMedGoogle Scholar
  47. 47.
    Gribben JG, Saporito L, Barber M, et al.: Bone marrows of non-Hodgkin’s lymphoma patients with a bcl-2 translocation can be purged of polymerase chain reaction-detectable lymphoma cells using monoclonal antibodies and immunomagnetic bead depletion. Blood 80:1083–1089, 1992.PubMedGoogle Scholar
  48. 48.
    Gribben JG, Freedman AS, Neuberg D, et al.: Immunologic purging of marrow assessed by PCR before autologous bone marrow transplantation for B-cell lymphoma. N Engl J Med 325:1525–1533, 1991.PubMedCrossRefGoogle Scholar
  49. 49.
    Finke J, Slanina J, Lange W, Dolken G: Persistence of circulating t(14;18) positive cells in long-term remission after radiation therapy for localized-stage follicular lymphoma. J Clin Oncol 11:1668–1673, 1993.PubMedGoogle Scholar
  50. 50.
    Price CG, Meerabux J, Murtagh S, Cotter FE, Rohatiner AZ, Young BD, Lister TA: The significance of circulating cells carrying t(14;18) in long remission from follicular lymphoma. J Clin Oncol 9:1527–1532, 1991.PubMedGoogle Scholar
  51. 51.
    Limpens J, de Jong D, van Krieken JH, Price CG, Young BD, van Ommen GJ, Kluin PM: Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 6:2271–2276, 1991.PubMedGoogle Scholar
  52. 52.
    Aster JC, Kobayashi Y, Shiota M, Mori S, Sklar J: Detection of the t(14;18) at similar frequencies in hyperplastic lymphoid tissues from American and Japanese patients. Am J Pathol 141:291–299, 1992.PubMedGoogle Scholar
  53. 53.
    Stetler-Stevenson M, Cush-Stanton S, Cossman J: Involvement of the bcl-2 gene in Hodgkin’s disease. J Natl Cancer Inst 82:855–858, 1994.Google Scholar
  54. 54.
    Segal GH, Scott M, Jorgensen T, Braylan RC: Standard polymerase chain reaction analysis does not detect t(14;18) in reactive lymphoid hyperplasia. Arch Pathol Lab Med 118:791–794, 1994.PubMedGoogle Scholar
  55. 55.
    Luthra R, Hai S, Pugh WC: Polymerase chain reaction detection of the t(11;14) translocation involving the bcl-1 major translocation cluster in mantle cell lymphoma. Diagn Mol Pathol 4:4–7, 1995.PubMedCrossRefGoogle Scholar
  56. 56.
    Williams ME, Swerdlow SH, Meeker TC: Chromosome t(11;14)(q13;q32) breakpoints in centrocytic lymphoma are highly localized at the bcl-1 major translocation cluster. Leukemia 7:1437–1440, 1993.PubMedGoogle Scholar
  57. 57.
    Molot RJ, Meeker TC, Wittwer CT, Perkins SL, Segal GH, Masih AS, Braylan RC, Kjeldsberg CR: Antigen expression and polymerase chain reaction amplification of mantle cell lymphomas. Blood 83:1626–1631, 1994.PubMedGoogle Scholar
  58. 58.
    Rimokh R, Berger F, Delsol G, Digonnet I, Rouault JP, Tigaud JD, Gadoux M, Coiffier B, Bryon PA, Magaud JP: Detection of the chromosomal translocation t(11;14) by polymerase chain reaction in mantle cell lymphomas. Blood 83:1871–1875, 1995.Google Scholar
  59. 59.
    Downing JR, Shurtleff SA, Zielenska M, Curcio-Brint AM, Behm FG, Head DR, Sandlund JT, Weisenburger DD, Kossakowska AE, Thorner P, et al.: Molecular detection of the (2;5) translocation of non-Hodgkin’s lymphoma by reverse transcriptase-polymerase chain reaction. Blood 85: 3416–3422, 1995.PubMedGoogle Scholar
  60. 60.
    Waggott W, Lo YM, Bastard C, Gatter KC, Leroux D, Mason DY, Boultwood J, Wainscoat JS: Detection of NPM-ALK DNA rearrangement in CD30 positive anaplastic large cell lymphoma. Br J Haematol 89: 905–907, 1995.PubMedCrossRefGoogle Scholar
  61. 61.
    Lopategui JR, Sun LH, Chan JK, Gaffey MJ, Frierson Jr HF, Glackin C, Weiss LM: Low frequency association of the t(2;5)(p23;q35) chromosomal translocation with CD30+ lymphomas from American and Asian patients. A reverse transcriptase-polymerase chain reaction study. Am J Pathol 146:323–328, 1995.PubMedGoogle Scholar
  62. 62.
    Orscheschek K, Merz H, Hell J, Binder T, Bartels H, Feller AC: Large-cell anaplastic lymphoma-specific translocation (t[2;5] [p23;q35]) in Hodgkin’s disease: indication of a common pathogenesis? Lancet 345:87–90, 1995.PubMedCrossRefGoogle Scholar
  63. 63.
    Ladanyi M, Cavalchire G, Morris SW, Downing J, Filippa DA: Reverse transcriptase polymerase chain reaction for the Ki-1 anaplastic large cell lymphoma-associated t(2;5) translocation in Hodgkin’s disease Am J Pathol 145:1296–1300, 1994.Google Scholar
  64. 64.
    Barr FG, Chatten J, D’Cruz CM, Wilson AE, Nauta LE, Nycum LM, Biegel JA, Womer RB: Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA 273:553–557, 1995.PubMedCrossRefGoogle Scholar
  65. 65.
    Toretsky JA, Neckers L, Wexler LH: Detection of (11;22)(q24;q12) translocation-bearing cells in peripheral blood progenitor cells of patients with Ewing’s sarcoma family of tumors. J Natl Cancer Inst 87:385–386, 1995.PubMedCrossRefGoogle Scholar
  66. 66.
    Sandberg AA, Bridge JA: The cytogenetics of bone and soft tissue tumors. Austin; TX: Landes, 1994.Google Scholar
  67. 67.
    Stenman G, Kindblom LG, Angervall L: Reciprocal translocation t(12;22)(q13;q13) in clear-cell sarcoma of tendons and aponeuroses. Genes Chromosome Cancer 4:122–127, 1992.CrossRefGoogle Scholar
  68. 68.
    Reeves BR, Fletcher CD, Gusterson BA: Translocation t(12;22)(q13;q13) is a nonrandom rearrangement in clear cell sarcoma. Cancer Genet Cytogenet 64:101–113, 1992.PubMedCrossRefGoogle Scholar
  69. 69.
    Travis JA, Bridge JA: Significance of both numerical and structural chromosomal abnormalities in clear cell sarcoma. Cancer Genet Cytogenet 64:104–116, 1992.PubMedCrossRefGoogle Scholar
  70. 70.
    Rodriguez E, Sreekantaiah C, Reuter VE, Motzer RJ, Chaganti RS: t(12;22)(q13;q13) and trisomy 8 are nonrandom aberrations in clear-cell sarcoma. Cancer Genet Cytogenet 64:107–110, 1992.PubMedCrossRefGoogle Scholar
  71. 71.
    Mrozek K, Karakousis CP, Perez-Mesa C, Bloomfield CD: Translocation t(12;22)(q13;q12.2–12.3) in a clear cell sarcoma of tendons and aponeuroses. Genes Chromosom Cancer 6:249–252, 1993.PubMedCrossRefGoogle Scholar
  72. 72.
    Knight JC, Renwick PJ, Cin PD, Van den Berghe H, Fletcher CD: Translocation t(12;16)(q13;p11) in myxoid liposarcoma and round cell liposarcoma: molecular and cytogenetic analysis. Cancer Res 55:24–27, 1995.PubMedGoogle Scholar
  73. 73.
    Panagopoulos I, Mandahl N, Ron D, Hoglund M, Nilbert M, Mertens F, Mitelman F, Aman P: Characterization of the CHOP breakpoints and fusion transcripts in myxoid liposarcomas with the 12;16 translocation. Cancer Res 15:6500–6503, 1994.Google Scholar
  74. 74.
    Fligman I, Lonardo F, Jhanwar SC, Gerald WL, Woodruff J, Ladanyi M: Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol 147:1592–1599, 1995.PubMedGoogle Scholar
  75. 75.
    Shipley J, Crew J, Birdsall S, et al: Interphase Fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma. Am J Pathol 148:559–567, 1996.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Timothy J. O’Leary

There are no affiliations available

Personalised recommendations