Scattered Radiation in Chest Radiography

  • James A. Sorenson
  • Loren T. Niklason


Chest radiography is the most frequently performed radiologic study in a typical radiology department. In 1980 more than 60 million chest radiography examinations were performed in the United States, accounting for greater than one third of the total radiologic imaging procedures [Johnson and Abernathy, 1983]. The reasons for this dominant role are twofold: First, the conventional chest radiograph conveys an extraordinary amount of information about a major portion of human anatomy, including lungs, heart, major blood vessels, and substantial portions of the skeleton. These structures, which are involved primarily or secondarily in many diseases, are presented on a single image, with good spatial resolution (several line pairs per millimeter) and with good contrast provided by natural air versus soft tissue versus bone contrast relationships. Second, chest radiography can be performed simply, at relatively low cost, and with low radiation dose to the patient.


Chest Radiography Scattered Radiation Digital Radiography Scatter Radiation Digital Chest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong JD, Sorenson JA, Nelson JA, et al: Clinical evaluation of unsharp masking and slit scanning techniques in chest radiography. Radiology 147: 351–356 (1983).Google Scholar
  2. Barnes GT: Characteristics of scatter in Logan WW, Muntz EP (eds): Reduced Dose Mammography. New York, Masson, (1979) pp 223–242.Google Scholar
  3. Barnes GT, Brezovich IA: A new type of grid. Med Phys 4: 451–453 (1977).CrossRefGoogle Scholar
  4. Barrett HH, Swindell W: Radiological Imaging, vol 1. New York. Grune and Stratton, (1981) p 194.Google Scholar
  5. Brogdon BG, Kelsey CA, Moseley RD Jr: Factors affecting perception of pulmonary lesions. Radiol Clin North Am 21: 633–654 (1983).Google Scholar
  6. Christensen EE, Dietz GW, Murry RC, et al: A modular chest phantom, in: Optimization of Chest Radiography. U.S. Dept. of Health and Human Services, HHS Publ. (FDA) 80–8124, (1980) pp 249–254.Google Scholar
  7. Dauvillier A: Appariel pour la Realisation de la Radioscopic et de la Radiographic Integral. Brevet d’invention No. 521, 746. Office National de la Propiete Industrielle, Republique Francois. Issued March 14, 1921.Google Scholar
  8. Fräser RG, Breatnach E, Barnes GT: Digital radiography of the chest: clinical experience with a prototype unit. Radiology 148: 1–5 (1983).Google Scholar
  9. Fraser RG, Hickey NM, Niklason LT, et al: Calcification in pulmonary nodules: detection with dual-energy digital radiography. Radiology 160: 595–601 (1986).Google Scholar
  10. Hickey NM, Niklason LT, Sabbagh E, et al: Dual-energy digital radiographic quantification of calcium in simulated pulmonary nodules. AJR 148: 19–24 (1987).Google Scholar
  11. Ishida M, Kato H, Doi K, et al: Development of a new digital radiographic image processing system. SPIE 347: 42–48 (1982).Google Scholar
  12. Johnson GA, Ravin CE: A survey of digital chest radiography. Radiol Clin North Am 21(4): 655–665 (1983).Google Scholar
  13. Johnson JL, Abernathy DL: Diagnostic imaging procedure volume in the United States. Radiology 146: 851–853 (1983).Google Scholar
  14. Kruger RA, Armstrong JD, Sorenson JA, et al: Dual-energy film subtraction technique for detecting calcification in solitary pulmonary nodules. Radiology 140: 213–219 (1981).Google Scholar
  15. Kundel HL, Nodine CF, Carmody D: Visual scanning, pattern recognition and decision-making in pulmonary nodule detection. Invest Radiol 13: 175–181 (1978).CrossRefGoogle Scholar
  16. Lehmann LA, Alvarez RE, Macovski A, et al: Generalized image constructions in dual kVp digital radiography. Med Phys 5: 659–667 (1981).CrossRefGoogle Scholar
  17. Love LA, Kruger RA, Simons MA: Convolution filtering technique for estimating scatter distributions in radiographic images. SPIE 626(1): 275 (1986).Google Scholar
  18. MacMahon H, Vyborny C, Powell G, et al: The effect of pixel size on detection rate of early pulmonary sarcoidosis in digital chest radiographic systems. SPIE 486: 14–20 (1984).Google Scholar
  19. Manninen H, Terho EO, Wiljasalo M, et al: An evaluation of different imaging chains in clinical chest radiography. Br J Radiol 57: 991–995 (1984).CrossRefGoogle Scholar
  20. McLoud TC, Kushner DC, Dedrick CG, et al: Digital radiography in the assessment of pleural changes in an asbestos exposed population. Presented at 70th Scientific Assembly and Annual Meeting of RSNA/AAPM, November 1984, Scientific presentation No. 758.Google Scholar
  21. Muhm JR, Miller WE, Fontana RS, et al: Lung cancer detected during a screening program using four-month chest radiographs. Radiology 148: 609–615 (1983).Google Scholar
  22. Niklason LT, Hickey NM, Chakraborty DP, et al: Dual-energy digital vs. conventional chest radiography for the detection of lung nodules. Radiology 157(P): 92 (1985).Google Scholar
  23. Niklason LT, Sorenson JA, Nelson JA: Scattered radiation in chest radiography. Med Phys 8: 677–681 (1981).CrossRefGoogle Scholar
  24. Pasche O: Uber eine neue Blendervorrichtung in der Rontgentechik. Deutsche Med Wochenschr 29: 267 (1903).CrossRefGoogle Scholar
  25. Peppier WW, Kudva B, Dobbins JT, et al: Digitally controlled beam attenuator. SPIE 347: 106–111 (1982).Google Scholar
  26. Plewes DB, Vogelstein E: A scanning system for chest radiography with regional exposure control: practical implementation. Med Phys 10: 655–663 (1983).CrossRefGoogle Scholar
  27. Siegelman SS, Khouri NF, Scott WW, et al: Computed tomography of the solitary pulmonary nodule. Semin Roentgenol 19: 165–172 (1984).CrossRefGoogle Scholar
  28. Sommer FG, Brody WR, Macovski A, et al: Dual-energy scanned projection radiography. Appl Radiol; March/April, (1982) pp 59–66.Google Scholar
  29. Sonoda M, Takano M, Miyahara J, Computed radiography utilizing scanning laser stimulated luminescence. Radiology 148: 833–838 (1983).Google Scholar
  30. Sorenson JA, Armstrong JD, Niklason LT, et al: Letter to Editor: Enhanced unsharp masking technique. Invest Radiol (March/April, 1981), pp 59–66.Google Scholar
  31. Sorenson JA, Floch J: Scattered rejection by air gaps; an empirical model. Med Phys 12(3): 308–316 (1985).CrossRefGoogle Scholar
  32. Sorenson JA, Mitchell CM: Optical unsharp masking and contrast enhancement of chest radiographs. Radiology 157(P): 240 (1985).Google Scholar
  33. Sorenson JA, Nelson JA: Investigations of moving-slit radiography. Radiology 120: 705–711 (1976).Google Scholar
  34. Sorenson JA, Nelson JA, Niklason LT, et al: Rotating disk device for slit radiography of the chest. Radiology 134: 227–231 (1980).Google Scholar
  35. Sorenson JA, Niklason LT, Jacobsen SC, et al: Tantalum air-interspace crossed grid: design and performance characteristics. Radiology 145: 485–492 (1982).Google Scholar
  36. Sorenson JA, Niklason LT, Nelson JA: Photographic unsharp masking in chest radiography. Invest Radiol 16: 281–288 (1981).CrossRefGoogle Scholar
  37. Stein JA: X-ray imaging with a scanning beam. Radiology 117: 713–716 (1975).Google Scholar
  38. Street JN, Mcintosh WL, Manack AW, et al: Optimizing photographic information transfer by CRT—a technology and applications review. SPIE 496: 162–172 (1984).Google Scholar
  39. Tesic MM, Mattson RA, Barnes GT, et al: Digital radiography of the chest: design features and considerations for a prototype unit. Radiology 148: 259–264 (1983).Google Scholar
  40. Tesic MM, Sones RA, Morgan DR: Single-slit digital radiography: some practical considerations. Radiology 142: 697–702 (1984).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • James A. Sorenson
  • Loren T. Niklason

There are no affiliations available

Personalised recommendations