Magnetic Phase Transitions in Silicate Minerals

  • J. M. D. Coey
  • Subrata Ghose
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 7)


Natural silicates often contain small amounts of 3d transition metal ions in octahedral sites, which possess a magnetic moment due to unpaired 3d electrons. When the concentration of 3d ions is sufficiently high for them to couple magnetically via exchange interactions, there may be a phase transition to a collective, magnetically ordered state at low temperatures.


Neutron Diffraction Magnetic Structure Silicate Mineral Magnetic Order Magnetic Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacon, G.E. (1982) Neutron Diffraction, 3rd ed. Oxford University Press, London.Google Scholar
  2. Bailey, S.W. (1980) Structures of layer silicates. In Crystal Structures of Clay Minerals and Their X-Ray Identification, edited by G.W. Brindley and G. Brown, p. 1. Mineralogical Society, London.Google Scholar
  3. Ballet, O., and Coey, J.M.D. (1982) Magnetic properties of sheet silicates; 2:1 layer minerals. Phys. Chem. Minerals 8, 218–229.CrossRefGoogle Scholar
  4. Ballet, O., Coey, J.M.D., and Burke, K.J. (1985a) Magnetic properties of sheet silicates; 2:1:1 layer minerals. Phys. Chem. Minerals 12, 370–378.CrossRefGoogle Scholar
  5. Ballet, O., Coey, J.M.D., Mangin, P., and Townsend, M.G. (1985b) Ferrous talc—a planar antiferromagnetic. Solid State Commun. 55, 787–790.CrossRefGoogle Scholar
  6. Ballet, O., Fuess, H., and Fritzsche, T. (1987) Magnetic structure and cation distribution in (Fe,Mn)2SiO4 olivine by neutron diffraction. Phys. Chem. Minerals 15, 54–58.CrossRefGoogle Scholar
  7. Ballet, O., Fuess, H., Wacker, K., Untersteller, E., Treutman W., Hellner, E., and Hosoya, S. (1988a) Magnetization measurements on synthetic olivine crystals A2SiO4 with A = Mn, Fe or Co. J. Phys. C. (in press).Google Scholar
  8. Ballet, O., Coey, J.M.D., Fillion, F., Ghose, S., Hewatt, A.W., and Regnard, J.R. (1988b) Magnetic order in acmite, NaFeSi2O6. Phys. Chem. Minerals (submitted).Google Scholar
  9. Borg, R.J., and Borg, I.Y. (1974) Magnetic order in certain alkali amphiboles, a Mössbauer investigation. J. Phys. (Paris) 35, C6–553–556.Google Scholar
  10. Borg, R.J., and Borg, I.Y. (1980) Mössbauer study of behaviour of oriented single crystals of riebeckite at low temperature and their magnetic properties. Phys. Chem. Minerals 5, 219–234.Google Scholar
  11. Caron, L.G., Santoro, R.P., and Newnham, R.E. (1965) Magnetic structure of CaMnSiO4. J. Phys. Chem. Solids 26, 927–930.CrossRefGoogle Scholar
  12. Coey, J.M.D. (1984) Mössbauer spectroscopy of silicate minerals. In Chemical Applications of Mössbauer Spectroscopy, edited by G.J. Long, pp. 443–509. Plenum, New York.Google Scholar
  13. Coey, J.M.D. (1987a) Magnetic order in trioctahedral sheet silicates — a review. In Proceedings of the International Clay Conference, Denver 1985, edited by L.G. Schultz, H. Olphen, and F.A. Mumpton, pp. 261–267. Clay Minerals Society.Google Scholar
  14. Coey, J.M.D. (1987b) Magnetic properties of iron in soil oxides and clay minerals. In Iron in Soils and Sediments, edited by J.A. Stucki and B.A. Goodman. Riedel, Dordrecht. Ch. 14.Google Scholar
  15. Coey, J.M.D., and Ballet, O. (1978) La greenalite-argile metamagnétique. C.R. Acad. Sci. Paris 286, 355–358.Google Scholar
  16. Coey, J.M.D., and Ghose, S. (1985) Magnetic order in hedenbergite. Solid State Commun 53, 143–145.CrossRefGoogle Scholar
  17. Coey, J.M.D., Ballet, O., Moukarika, A., and Soubeyroux, J.L. (1981) Magnetic properties of sheet silicates; 1:1 layer minerals. Phys. Chem. Minerals 7, 141–149.CrossRefGoogle Scholar
  18. Coey, J.M.D., Moukarika, A., and McDonagh, C.M. (1982) Electron hopping in cronstedtite. Solid State Commun. 41, 797–800.CrossRefGoogle Scholar
  19. Coey, J.M.D., Allan, J., Kan Xuemin, Dang, N.V., and Ghose, S. (1984a) Magnetic and electrical properties of ilvaite. J. Appl. Phys. 55, 1963–1965.CrossRefGoogle Scholar
  20. Coey, J.M.D., Chukhov, F.V., and Zvyagin, B.B. (1984b) Cation distribution, Mössbauer spectra and magnetic properties of ferripyrophyllite. Clays Clay Miner. 32, 198–203.CrossRefGoogle Scholar
  21. Eisenstein, J.C., Taragin, M.F., and Thornton, D.D. (1975) Antiferromagnetic order in amphibole asbestos. AIP Conf Proc. 24, 357–358.CrossRefGoogle Scholar
  22. Ghose, S., Hewatt, A.W., and Marezio, M. (1984) A neutron powder diffraction study of the crystal and magnetic structures of ilvaite from 305 to 5 K-a mixed valence iron silicate with an electronic phase transition. Phys. Chem. Minerals 11, 67–74.CrossRefGoogle Scholar
  23. Ghose, S., Sen Gupta, P.K., and Schlemper, E.O. (1985) Electron ordering in ilvaite, a mixed-valence iron silicate. Am. Mineral. 70, 1248–1252.Google Scholar
  24. Ghose, S., Cox, D.E., and Dang, N.V. (1987a) Magnetic order in grunerite Fe7Si8O22(OH)2 -a quasi-one dimensional antiferromagnet with a spin canting transition. Phys. Chem. Minerals 14, 36–44.CrossRefGoogle Scholar
  25. Ghose, S., Hewat, A.W., and Van Dang, N. (1987b) Magnetic phase transition and spin-canting in ferrosilite, Fe2Si2O6-a quasi-one dimensional antiferromagnet. Phys. Chem. Minerals (submitted).Google Scholar
  26. Ghose, S., Hewat, A.W., and Weidner, J.R. (1987c) Magnetic phase transition in hedenbergite, CaFeSi2O6-a quasi-one dimensional antiferromagnet. Phys. Chem. Minerals (submitted).Google Scholar
  27. Gopal, E.S.R. (1972) Low Temperature Specific Heats. Plenum, New York.Google Scholar
  28. Guggenheim, S.J., and Bailey, S.W. (1982) The superlattice of minnesotaite. Can. Mineral. 20, 579–584.Google Scholar
  29. Kan Xuemin and Coey, J.M.D. (1985) Mössbauer spectra, magnetic and electrical properties of laihunite, a mixed-valence iron olivine mineral. Am. Mineral. 70, 576–580.Google Scholar
  30. Kondo, H., and Miyahara, S. (1963) Magnetic susceptibility of Fe2SiO4. J. Phys. Soc. Jpn. 18, 305–311.CrossRefGoogle Scholar
  31. Kiindig, W., Cape, J.A., Lindquist, R.H., and Constabaris, G. (1967) Some magnetic properties of Fe2SiO4 from 4 K to 300 K. J. Appl. Phys. 38, 947–948.CrossRefGoogle Scholar
  32. Linares, J., Regnard, J.R., and Dang, N.V. (1983) Magnetic behaviour of grunerite from Mössbauer spectroscopy. J. Magn. Magn. Mater. 31–34, 715–716.CrossRefGoogle Scholar
  33. Litovchenko, A.S., Brodovoi, A.V., and Melnikov, A.A. (1982) A study of the temperature dependence of magnetic susceptibilities and 7Li nmr spectra of ferriferrous micas. Phys. Status Solidi A 73, K79–82.CrossRefGoogle Scholar
  34. Litovchenko, A.S., Brodovoi, A.V., Tkachenko, V.D., and Mazykin, V.V. (1984) Temperature dependence of the magnetic susceptibility of teniolite. Phys. Status Solidi A 81, K151–153.CrossRefGoogle Scholar
  35. Litterst, F.J., and Amthauer, G. (1984) Electron delocalization in ilvaite and reinterpretation of its 57Fe Mössbauer spectrum. Phys. Chem. Minerals 10, 250–255.CrossRefGoogle Scholar
  36. Lottermoser, W., Müller, R., and Fuess, H. (1986) Antiferromagnetism in synthetic olivines. J. Magn. Magn. Mater. 54–57, 1005–1006.CrossRefGoogle Scholar
  37. Lottermoser, W., Amthauer, G., Hafner, S.S., and Fuess, H. (1988) Mössbauer measurements and antiferromagnetism in synthetic αFe2SiO4 (in preparation).Google Scholar
  38. Moukarika, A., Coey, J.M.D., and Dang, N.V. (1983) Magnetic order in crocidolite asbestos. Phys. Chem. Minerals 9, 269–275.CrossRefGoogle Scholar
  39. Müller, R., Fuess, H., and Brown, P.J. (1982) Magnetic properties of synthetic fayalite. J. Phys. (Paris) 43, C7–249–252.Google Scholar
  40. Murad, E. (1984) Magnetic ordering in andradite. Am. Mineral. 69, 722–724.Google Scholar
  41. Newnham, R.E., Santoro, R.P., Fang, J., and Nomura, S. (1965) Antiferromagnetism in nickel orthosilicate. Acta Crystallogr. 19, 147–148.CrossRefGoogle Scholar
  42. Newnham, R.E., Caron, L.G., and Santoro, R.P. (1966) Magnetic properties of CaCoSiO4 and CaFeSiO4. J. Am. Ceram. Soc. 49, 284–285.CrossRefGoogle Scholar
  43. Nomura, S., Santoro, R., Fang, J., and Newnham, R.E. (1964) Antiferromagnetism in cobalt orthosilicate. J. Phys. Chem. Solids 25, 901–905.CrossRefGoogle Scholar
  44. Prandl, W., and Wagner, F. (1971) Die Orientierung des elektrischen Feldgradienten and das innere Magnetfeld beim Almandin. Z. Kristallog. 134, 344–349.CrossRefGoogle Scholar
  45. Regnard, J.R. (1976) Mössbauer study of natural crystals of staurolite. J. Phys. (Paris) 37, C6–797–800.Google Scholar
  46. Regnard, J.R., Guillen, R., Wiedenmann, A., Fillion, G., Hafner, S.S., and Langer, K. (1986) Mössbauer and magnetic studies of orthorhombic FeSiO3. Hyperfine Interactions 28, 589–592.CrossRefGoogle Scholar
  47. Robie, R.A., Finch, C.B., and Hemingway, B.S. (1982) Heat capacity and entropy of fayalite Fe2SiO4 between 5.1 and 383K. Am. Mineral. 67, 463–469.Google Scholar
  48. Santoro, R.P., Newnham, R.E., and Nomura, S. (1966) Magnetic properties of Mn2SiO4 and Fe2SiO4. J. Phys. Chem. Solids 27, 655–666.CrossRefGoogle Scholar
  49. Sawaoka, A., Miyahara, S., and Akimoto, S. (1968) Antiferromagnetic order in MSiO3. J. Phys. Soc. Jpn. 25, 1253–1258.CrossRefGoogle Scholar
  50. Townsend, M.G., Longworth, G., and Roudaut, E. (1985) Field-induced ferromagnetism in minnesotaite. Phys. Chem. Minerals 12, 9–12.CrossRefGoogle Scholar
  51. Wiedenmann, A., and Regnard, J.R. (1986) Neutron diffraction study of the magnetic ordering in pyroxenes Fex M 1XSiO3. Solid State Commun. 57, 499–504.CrossRefGoogle Scholar
  52. Wiedenmann, A., Regnard, J.R., Fillion, G., and Hafner, S.S. (1986) Magnetic properties and magnetic ordering of the orthopyroxenes FexMg1xSiO3. J. Phys. C 19, 3683–3696.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • J. M. D. Coey
  • Subrata Ghose

There are no affiliations available

Personalised recommendations