Skip to main content

Charge Localization and Associated Crystallographic and Magnetic Phase Transitions in Ilvaite, a Mixed-Valence Iron Silicate

  • Conference paper
Structural and Magnetic Phase Transitions in Minerals

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 7))

Abstract

A number of mixed-valence transition metal oxides show metal-insulator transitions characterized by a large conductivity decrease and a specific heat anomaly. A typical example is magnetite, Fe3O4, which has one conducting electron for two cationic sites (Fe2+ and Fe3+). Instead of being metallic at T = 0K, it is an insulator at low temperatures due to charge localization. The metal-insulator transition in magnetite is also known as the Verwey transition, because Verwey (1939) first pointed out that above the transition (T v = 119 K) the electronic charge associated with Fe2+ and Fe3+ ions in the octahedral B sites is completely delocalized, whereas below the transition Fe2+ and Fe3+ occur in their distinct ionic states (Verwey and Haymaan, 1941).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartholomé, P., Duchesne, J.C., and Van der Plas, L. (1968) Sur une forme monoclinique de l’ilvaite, Ann. Soc. Geol. Belg. 90, 779–778.

    Google Scholar 

  • Belov, N.V., and Mokeeva, V.I. (1954) The crystal structure of ilvaite, Trudy. Inst. Kristallogr. Akad. Nauk SSSR 9, 89–102 (in Russian).

    Google Scholar 

  • Beran, A., and Bittner, H. (1974) Untersuchungen zur Kristallchemie des Ilvaits, Tschermaks Mineral. Petrogr. Mitt. 21, 11–29.

    Article  Google Scholar 

  • Chakraverty, B.K. (1980) Charge ordering in Fe3O4, Ti4O7 and bipolarons, Philos. Mag. B42, 473–478.

    Article  Google Scholar 

  • Coey, J.M.D., and Ghose, S. (1988) Magnetic phase transitions in silicate minerals in Structural and Magnetic Phase Transitions in Minerals, edited by S. Ghose, J.M.D. Coey, and E. Salje. Springer-Verlag, New York, 162–184.

    Google Scholar 

  • Coey, J.M.D., Allan, J., Xuemin, K., van Dang, N., and Ghose, S. (1984) Magnetic and electrical properties of ilvaite, J. Appl. Phys. 55, 1963–1965.

    Article  Google Scholar 

  • Dietrich, V. (1972) Ilvaite, Ferroantigorit und Greenalith als Begleiter oxidisch-sulfidischer Vererzungen in den Oberhalbsteiner Serpentiniten, Schweiz. Mineral. Petrol. Mitt. 52, 57–74.

    Google Scholar 

  • Evans, B.J., and Amthauer, G. (1980) The electronic structure of ilvaite and the pressure and temperature dependence of its 57Fe Mössbauer spectrum, J. Phys. Chem. Solids 41, 985–1001.

    Article  Google Scholar 

  • Finger, L.W., and Hazen, R.M. (1987) Crystal structure of monoclinic ilvaite and the nature of the monoclinic-orthorhombic transition at high pressure, Z. Kristallogr., in press.

    Google Scholar 

  • Finger, L.W., Hazen, R.M., and Hughes, J.M. (1982) Crystal structure of monoclinic ilvaite, Carnegie Inst. Washington Yearb. 81, 386–388.

    Google Scholar 

  • Gerard, A., and Grandjean, F. (1971) Observation by Mössbauer effect of an electron hopping process in ilvaite, Solid State Commun. 9, 1845–1849.

    Article  Google Scholar 

  • Ghose, S., Hewat, A.W., Marezio, M., Robie, R.A., and Evans H.T. (1984a) Electron and spin ordering and associated phase transitions in ilvaite, a mixed valence iron silicate, Trans. Am. Geophys. Union 65, 289.

    Google Scholar 

  • Ghose, S., Hewat, A.W., and Marezio, M. (1984b) A neutron powder diffraction study of the crystal and magnetic structures of ilvaite from 305 to 5K-a mixed valence iron silicate with an electronic transition, Phys. Chem. Minerals 11, 67–74.

    Article  Google Scholar 

  • Ghose, S., SenGupta, P.K., and Schlemper, E.O. (1985) Electron ordering in ilvaite, a mixed-valence iron silicate: Crystal structure refinement at 138K, Am. Mineral. 70, 1248–1252

    Google Scholar 

  • Ghosh, D., Kundu, T., DasGupta, S., and Ghose, S. (1987) Electron delocalization and magnetic behavior in single crystals of ilvaite, and mixed valence iron silicate, Phys. Chem. Minerals 14, 151–155.

    Article  Google Scholar 

  • Goodenough, J.B. (1980) The Verwey transition revisited, in Mixed-Valence Compounds, edited by D.B. Brown, pp. 413–425. Reidel, Dordrecht, Netherlands.

    Google Scholar 

  • Grandjean, F., and Gerard, A. (1975) Analysis by Mössbauer spectroscopy of the electronic hopping process in ilvaite, Solid State Commun. 16, 553–556.

    Article  Google Scholar 

  • Haga, N., and Takéuchi, Y. (1976) Neutron diffraction study of ilvaite, Z. Kristallogr. 144, 161–174.

    Article  Google Scholar 

  • Hamilton, W.C. (1958) Neutron diffraction investigation of the 119°K transition in magnetite, Phys. Rev. 110, 1050–1057.

    Article  Google Scholar 

  • Heilmann, I.U., Olsen, N.B., and Olsen, J.S. (1977) Electron hopping and temperature dependent oxidation states of iron in ilvaite by Mössbauer effect, Phys. Scr. 15, 285–288.

    Article  Google Scholar 

  • Ihle, D., and Lorenz, B. (1986) Small-polaron conduction and short-range order in Fe3O4, J. Phys. C: Solid State Phys. 19, 5239–5251.

    Article  Google Scholar 

  • Iida, S. (1980) Structure of Fe3O4 at low temperatures, Philos. Mag. B42, 349–376.

    Article  Google Scholar 

  • Iida, S., Mizushima, K., Mizoguchi, M., Mada, J., Umemura, S., Yoshida, J., and Nakao, K. (1977) Physical aspects of magnetite, J. Phys. Paris Cl, 73–77.

    Google Scholar 

  • Iizumi, M., Koetzle, T.F., Shirane, G., Chikazumi, S., Matsui, M., and Todo, S. (1982) Structure of magnetite (Fe3O4) below the Verwey transition temperature, Acta Crystallogr. Sect. B 38, 2121–2188.

    Article  Google Scholar 

  • Kan, X., Ghose, S., and Dunlap, B.D. (1988) A 57Fe Mössbauer study of magnetic phase transitions and spin frustration in ilvaite, a mixed-valence iron silicate, Phys. Chem. Minerals (submitted).

    Google Scholar 

  • Litterst, F.J., and Amthauer, G. (1984) Electron delocalization in ilvaite, a reinterpretation of its 57Fe Mössbauer spectrum, Phys. Chem. Minerals 10, 250–255.

    Article  Google Scholar 

  • Mott, N.F. (1980) Materials with mixed valency that show a Verwey transition, Philos. Mag. B42, 327–335.

    Article  Google Scholar 

  • Néel, L., (1948) Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Annales de Physique, 12 Ser. 3, 137–148.

    Google Scholar 

  • Nolet, D.A., and Burns, R.G. (1979) Ilvaite: A study of temperature dependent electron delocalization by the Mössbauer effect, Phys. Chem. Minerals 4, 221–234.

    Article  Google Scholar 

  • Ralph, R.L., Finger, L.W., Hazen, R.M., and Ghose, S. (1984) Compressibility and crystal structure of andalusite at high pressure, Am. Mineral. 69, 513–519.

    Google Scholar 

  • Robie, R.A., Evans, H.T., Jr., and Hemingway, B.S. (1987) Thermophysical properties of ilvaite, CaFe2+ 2 Fe3+ Si2O7-O(OH). Heat capacity from 7 to 920K and thermal expansion between 298 and 856K, Phys. Chem. Minerals (in press).

    Google Scholar 

  • Sherman, D.M. (1986) Cluster molecular orbital description of the electronic structures of mixed valence iron oxides and silicates, Solid State Commun. 58, 719–723.

    Article  Google Scholar 

  • Shirane, G. (1977) The Verwey transition in magnetite, in Electron-Phonon Interactions and Phase Transitions, edited by T. Riste, pp. 393–408. Plenum, New York.

    Google Scholar 

  • Shirane, G., Chikazumi, S., Akimitsu, J., Chiba, K., Matsui, M., and Fujii, Y. (1975) Neu-tron scattering from low temperature phase of magnetite, J. Phys. Soc. Jpn. 39, 949–957.

    Article  Google Scholar 

  • Takéuchi, Y., Haga, N., and Bunno, M. (1983) X-ray study on polymorphism of ilvaite, HCaFe2+ 2 Fe3+O2 [Si2O7], Z. Kristallogr. 163, 267 - 283.

    Article  Google Scholar 

  • Yamanaka, Y., and Takéuchi, Y. (1979) Mössbauer spectra and magnetic features of ilvaites, Phys. Chem. Minerals 4, 149–159.

    Article  Google Scholar 

  • Verwey, E.J.W. (1939) Electronic conduction of magnetite (Fe3O4) and its transition point at low temperature, Nature 144, 327–328.

    Article  Google Scholar 

  • Verwey, E.-J., and Haymaan, P.W. (1941) Electronic conductivity and transition point of magnetite, (Fe3O4), Physica (Utrecht) 8, 979–987.

    Article  Google Scholar 

  • Winter, J.K., and Ghose, S. (1979) Thermal expansion and high temperature crystal chemistry of Al2SiO5 polymorphs, Am. Mineral. 64, 573–586.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Ghose, S. (1988). Charge Localization and Associated Crystallographic and Magnetic Phase Transitions in Ilvaite, a Mixed-Valence Iron Silicate. In: Ghose, S., Coey, J.M.D., Salje, E. (eds) Structural and Magnetic Phase Transitions in Minerals. Advances in Physical Geochemistry, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3862-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3862-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8379-9

  • Online ISBN: 978-1-4612-3862-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics