Skip to main content

A Proposed Thermomechanical Wear Theory

  • Conference paper

Abstract

The transmission of load and motion in a mechanical system rely on the relative contact movement between the tribological elements. However, tribological contacts induce surface tractions and wear takes place. Although wear processes in tribocontacts are still not fully understood, a major cause of wear is the interaction between the asperities of the contact surfaces. Various types of wear mechanisms have been considered [1, 2]. Adhesion, abrasion, fatigue and corrosion of the material are some of the important wear mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Survey of Possible Wear Mechanisms,” J. T. Burwell, WEAR, 1, 119 – 141 (1957).

    Article  Google Scholar 

  2. “Wear Theory and Mechanisms,” J. F. Archard, Wear Control Handbook, M. B. Peterson and W. O. Winer, editors, American Society of Mechanical Engineers, New York, 35 – 80 (1980).

    Google Scholar 

  3. “Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions,” H. Blok, Proceedings General Discussion on Lubrication and Lubricants, London, 2, Institution of Mechanical Engineers, London, 222 (1937).

    Google Scholar 

  4. “The Temperature of Rubbing Surfaces,” J. F. Archard, WEAR, 2, 438–455 (1958- 1959 ).

    Article  Google Scholar 

  5. “The Influence of Thermal Expansion on the Friction and Wear Process,” J. R. Barber, WEAR, 10, 155 – 159 (1967).

    Article  Google Scholar 

  6. “Thermoelastic Instabilities in the Sliding of Conforming Solids,” J. R. Barber, Proceedings of the Royal Society, London, A312, 177 – 188 (1969).

    Google Scholar 

  7. “Distortion of the Semi-Infinite Solid Due to Transient Surface Heating,” J. R. Barber, International Journal of Mechanics and Science, 14, 377 – 393 (1971).

    Article  Google Scholar 

  8. “Some Thermoelastic Contact Problems Involving Frictional Heating,” J. R. Barber, Quarterly Journal of Mechanics and Applied Mathematics, 29, 1 – 13 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  9. “The Transient Thermoelastic Contact of a Sphere Sliding on a Plane,” J. R. Barber, WEAR, 59, 21 – 29 (1980).

    Article  Google Scholar 

  10. “Thermoelastic Displacements and Stresses Due to a Heat Source Moving Over the Surface of a Half-Plane,” J. R. Barber, Journal of Applied Mechanics, Transactions of the American Society of Mechanical Engineers, 51, 636 – 640 (1984).

    MATH  Google Scholar 

  11. “Effect of Initial Surface Curvature on Frictionally Excited Thermoelastic Phenomena,” R. A. Burton, WEAR, 27, 195 – 207 (1974).

    Article  Google Scholar 

  12. “Large Disturbance Solution for Initially Flat Frictionally Heated Thermo- elastically Deformed Surfaces,” R. A. Burton and V. Nerlikar, Journal of Lubrication Technology, Transactions of the American Society of Mechanical Engineers, 97, 546 – 551 (1975).

    Google Scholar 

  13. “Thermal Deformation in Frictionally Heated Contact,” R. A. Burton, WEAR, 59, 1 - 20 (1980).

    Article  MathSciNet  Google Scholar 

  14. “Thermal Aspect of Galling of Dry Metallic Surface in Sliding Contact,” F. F. Ling and E. Saibel, WEAR, 1, 80 – 91 (1957).

    Article  Google Scholar 

  15. “Probable Interface Temperature of Solids in Sliding Contact,” F. F. Ling and S. L. Pu, WEAR, 7, 23 – 24 (1964).

    Article  Google Scholar 

  16. “On Temperature Transients in Sliding Interface,” F. F. Ling, Journal of Lubrication Technology, Transactions of the American Society of Mechanical Engineers, 91, 397 – 405 (1969).

    Google Scholar 

  17. “A Thermal, Thermoelastic and Wear Simulation of a High Energy Sliding Contact Problem,” F. E. Kennedy and F. F. Ling, Journal of Lubrication Technology, Transactions of the American Society of Mechanical Engineers, 96, 497 – 507 (1974).

    Google Scholar 

  18. “The Effect of ’Hot-Spot’ Temperatures on the Unlubricated Wear of Steel,” T. F. J. Quinn, American Society of Lubrication Engineers Transactions, 10, 158–168 (1967).

    Google Scholar 

  19. “Frictional Heating and the Oxidational Theory of Wear,” D. M. Rowson and T. F. J. Quinn, Journal of Physics D: Applied Physics, 13, 209 – 219 (1980).

    Article  ADS  Google Scholar 

  20. “Review of Oxidational Wear, Part I: The Origins of Oxidational Wear,” T. F. J. Quinn, Tribology International, 16, 257 – 271 (1983).

    Article  Google Scholar 

  21. “Review of Oxidational Wear, Part II: Recent Developments and Future Trends in Oxidational Wear Research,” T. F. J. Quinn, Tribology International, 16, 305 – 315 (1983).

    Article  Google Scholar 

  22. “Thermal Stress in a Two-Dimensional (Plane Stress) Half-Space for a Moving Heat Input,” R. A. Burton, WEAR, 79, 1 – 9 (1982).

    Article  Google Scholar 

  23. “Thermomechanical Cracking Due to Moving Frictional Loads,” J. H. Huang and F. D. Ju, WEAR, 102, 81 – 104 (1985).

    Article  Google Scholar 

  24. “Temperature Prediction in Mechanical Components, an Analytical Approach,” B. Gecim, Ph.D. Thesis, School of Mechanical Engineering, Georgia Institute of Technology (1984).

    Google Scholar 

  25. Thermoelasticity, H. Parkus, Springer-Verlag/Wien, New York, 18 (1976).

    MATH  Google Scholar 

  26. Theory of thermoelasticity with applications, J. L. Nowinski, Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, The Netherlands, 265 (1978).

    MATH  Google Scholar 

  27. A Treatise on the Mathematical Theory of Elasticity, A. E. H. Love, Dover, New York, 274 (1944).

    MATH  Google Scholar 

  28. Application des potentials a 1’etude de 1’equilibre et du mouvement des solides elastiques, J. Boussinesq, Gauthier-Villars, Paris, France (1885).

    Google Scholar 

  29. “Sur la lepartition des pressions dans un solide rectangulaire charge trans- versalement,” M. Flament, Comptes Rendus, 114, 1465 – 1468 (1892).

    Google Scholar 

  30. “Ricerche intorno all’equilibrio de corpi elastici isotropi,” V. Cerruti, Atliacademi nazl. Lincei, Mem. classe sci. fis., mat. c nat., 13, 81 (1892).

    Google Scholar 

  31. “The Stress Field Created by a Circular Sliding Contact,” G. M. Hamilton and L. E. Goodman, Journal of Applied Mechanics, 33, 371 – 376 (1966).

    Google Scholar 

  32. “Thermal Stress in a Viscoelastic-Plastic Plate with Temperature-Dependent Yield Stress,” H. G. Landau, J. H. Weiner and E. E. Zwicky, Journal of Applied Mechanics, 27, 297 – 302 (1960).

    MathSciNet  MATH  Google Scholar 

  33. Introduction to Ceramics, W. D. Kingery, H. K. Bowen and D. R. Uhlmann, 2nd edition, John Wiley and Sons, New York (1976).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Ting, BY., Winer, W.O. (1988). A Proposed Thermomechanical Wear Theory. In: Approaches to Modeling of Friction and Wear. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3814-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3814-0_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8363-8

  • Online ISBN: 978-1-4612-3814-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics