Rapid and Specific Detection Methods for Plant Mycoplasmas

  • C. Hiruki


Mycoplasmas (class, Mollicutes; order, Mycoplasmatales) are considered to be causal agents of yellows diseases of plants, formerly thought to be of viral origin because of close resemblance in symptomatology and mode of transmission. In plant pathology, however, since the initial discovery by Doi et al., (1967), the term “mycoplasma-like organisms” (MLO) has been in use to describe a group of prokaryotic microorganisms that morphologically resemble members of the Mycoplasmatales but lack proof of Koch’s postulates. Most attempts to isolate and culture these microorganisms, except those belonging to the genus Spiroplasma (Whitcomb, 1980), have been unsuccessful.


Mycoplasma Species Nucleic Acid Hybridization Aster Yellow Yellow Disease Mycoplasma Hyorhinis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T.F. and Stanley, W.M., 1941. A study by means of the electron microscope of reaction between tobacco mosaic virus and its antiserum. J. Biol. Chem. 139, 339–345.Google Scholar
  2. Archer, D.B. and Best, J. 1980. Serological relatedness of Spiroplasmas estimated by enzyme-linked immunosorbent assay and crossed Immunoelectrophoresis. J. Gen. Microbiol. 119, 413–422.Google Scholar
  3. Archer, D.B., Best, J. and Piaskitt, K.A., 1979. The distribution of spiroplasma within infected plants varies during the course of infection. Proc 4th Meeting Internat. Council Lethal Yellowing. Fort Lauderdale 1979, p. 9, Univ. Florida Pub. FL-80–1.Google Scholar
  4. Archer, D.B., Townsend, R. and Markham, P.G., 1982. Detection of Spiroplasma citri in plants and insect hosts by ELISA. Plant Pathol. 31, 299–306.CrossRefGoogle Scholar
  5. Beesley, J.E., Day, S.E., Betts, M.P. and Thorley, C.M., 1984. Immunocytochemical labeling of Bacteroides nodosus pili using an immunogold technique. J. Gen. Microbiol. 130, 1481–1487.PubMedGoogle Scholar
  6. Beesley, J.E., Orpin, A. and Adlam, C. 1984b. An evaluation of the conditions necessary for optimal protein A-gold labeling of capsular antigen in ultrathin methacrylate sections of the bacterium. Histochem. J. 16, 151–164.PubMedCrossRefGoogle Scholar
  7. Boulton, M.I. and Markham, P.G., 1985. The use of dot blotting for the detection of plant pathogens in insect vectors. In: New Developments in Techniques for Virus Detection. Jones, R.A.C., Torrance, L. (eds.) Assoc. Appl. Biol. Press.Google Scholar
  8. Boulton, M.I. Markham, P.G. and Davies, J. W. 1984. Nucleic acid hybridization techniques for the detection of plant pathogens in insect vectors. Proc. 1984 Brit. Crop Protection Conf. 3, 181–186.Google Scholar
  9. Bové J.M., 1984. Wall-less prokaryotes in plants. Annu. Rev. Phytopathol. 22, 361–396.CrossRefGoogle Scholar
  10. Bové J.M., Mouches, C, Carle-Junca, P., Degorce-Dumas, J.R., Tully, J.G. and Whitcomb, R.F., 1983. Spiroplasmas of group I: the Spiroplasma citri cluster. Yale J. Biol. Med. 56, 573–582.PubMedGoogle Scholar
  11. Bové J.M., Moutous, G., Saillard, C, Fos, A., Bonfils, J., Vignault, J.C, Nhami, A., Abassi, M., Kabbage, K., Hafidi, B., Mouches, C. and Viennot-Bourgin, G., 1979. Mise en evidence de Spiroplasma citri, l’agent causal de la maladie du “stubborn” des argumes dans 7 cicadelles du Maroc. C. R. Hebd. Seanes. Acad. Sei. 288, 335–338.Google Scholar
  12. Brigati, D.J., Myerson, D., Leary, J.J., Spalholz, B., Travis, S.Z., Fong, C.K.Y., Hsiung, G.D. and Ward, D.C., 1983. Detection of viral genomes in cultured cells and paraffin-embedded tissue sections using biotin-labeled hybridization probes. Virology 126, 32–50.PubMedCrossRefGoogle Scholar
  13. Buck, D.W., Kenneth, R.H. and McGarrity, G.J., 1982. Monoclonal antibodies specific for cell culture mycoplasmas. In vitro 18, 377–381.PubMedCrossRefGoogle Scholar
  14. Chen, Z.W., Lei, J.D. and Chen, T.A., 1986. Production of monoclonal antibodies against green leaf bug spiroplasmas. Phytopathology 76, 650–651.Google Scholar
  15. Cheng, W.S. and Chen, T.A., 1986. Production of monoclonal antibodies against honey bee spiroplasma As-576. Phytopathology 76, 658.Google Scholar
  16. Clark, M.F., Barbara, D.J. and Davies, D.L., 1983. Production and characteristics of antisera to Spiroplasma citri and clover phyllody-associated antigens derived from plants. Ann. Appl. Biol. 103: 251–259.CrossRefGoogle Scholar
  17. Clark, M.F., Flegg, C.L., Bar-Joseph, M. and Rottem, S., 1978. The detection of Spiroplasma citri by enzyme-linked immunosorbent assay (ELISA). Phytopathology 92, 332–337.CrossRefGoogle Scholar
  18. Clyde, W.A., Jr. 1983. Growth inhibition tests. In: Methods in Mycoplasmology (Razin, S., Tully, J.G., (eds) Vol. 1, pp. 405–410. Academic Press. New York.Google Scholar
  19. Davis, R.E. and Lee, I.M., 1982. Comparative properties of spiroplasmas and emerging taxonomie concepts: a proposal. Rev. Infect. Dis. Suppl. 4, S122–S128.CrossRefGoogle Scholar
  20. Davis. R.E., Lee, I.M. and Basciano, L.K., 1979. Spiroplasmas: serological grouping of strains associated with plants and insects. Can. J. Microbiol. 25, 861–866.PubMedCrossRefGoogle Scholar
  21. Davis, R.E., Worley, J.F., Whitcomb, R.F., Ishijima, T. and Steere, R.L., 1972. Helical filaments produced by a mycoplasma-like organism associated with corn stunt disease. Science 176, 521–523.PubMedCrossRefGoogle Scholar
  22. de Leeuw, G.T.N., Polak-Vogelzang, A.A. and Hagenaars, A.M., 1983. Absence of serological relationship between several mycoplasma-like organism “strains” Spiroplasma citri, corn stunt spiroplasma and Acholeplasma laidlawii, determined by enzyme-linked immunosorbent assay (ELISA). Phytopathol. Z. 107, 31–36.Google Scholar
  23. Derrick, K.S. and Brlansky, R.H., 1976. Assay for viruses and mycoplasmas using serologically specific electron microscopy. Phytopathology 66, 815–820.CrossRefGoogle Scholar
  24. Dijkstra, J. and Hiruki, C., 1974. A histochemical study on sandal (Santalum album) affected with spike disease and its diagnostic value. Neth. J. Plant Pathol. 80, 37–47.CrossRefGoogle Scholar
  25. Doi, Y., Teranaka, M., Yora, K. and Asuyama, H., 1967. Mycoplasma or PLT group—like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Ann. Phytopathol. Soc. Jpn. 33, 259–266.Google Scholar
  26. Dollet, M., Saillard, C., Garcia-Jurando, 0., Vignault, J.C., Gargani, D., Tully, J.G. and Bové J.M., 1979. An approach to the serological study of the Mycoplasmas of lethal yellowing in the coconuts in West Africa. Proc. 4th Meeting Internat. Council Lethal Yellowing. Fort Lauderdale 1979, p. 8, Univ. Florida Pupl. FL–80–1.Google Scholar
  27. Eden-Green, S.J., 1982. Detection of corn stunt spiroplasma in vivo by ELISA using antisera to extracts from infected corn plants (Zea mays) Plant Pathol. 31, 289–297.Google Scholar
  28. Engvall, E. and Perlmann, P. 1971. Enzyme-linked immunosorbent assay, ELISA. III. Quantitation of specific antibodies by enzyme-labelled ant i-immunoglobulin in antigen-coated tubes. J. Immunol. 109, 129–135.Google Scholar
  29. Galfré, G. and Milstein, C, 1981. Preparation of monoclonal antibodies: strategies and procedures. Meth. Enzymol. 73, 3–46.PubMedCrossRefGoogle Scholar
  30. Garnier, M., Clerc, M. and Bove, J.M., 1984. Growth and division of Spiroplasma citri: elongation of elementary helices. J. Bacteriol. 158, 23–28.PubMedGoogle Scholar
  31. Gordon, D.T., Nault, L.R., Gordon, N.H. and Heady, S.E., 1985. Serological detection of corn stunt spiroplasma and rayado fino virus in field-collected Dalbulus spp. from Mexico. Plant Dis. 59, 108–111.CrossRefGoogle Scholar
  32. Haber, S. and Hiruki, C, 1984. Biotechnology and plant virus identification: A prelude to disease control. Symposium on Biotechnology in Plant Science. Agric. Forest. Bull. 7, 41–48.Google Scholar
  33. Hahn, I.F., Bickerhahn, Lenz, W. and Brandis, H., 1986. An avidinbiotin ELISA for the detection of staphylococcal enterotoxins A and B. J. Immunol. Meth. 92, 25–29.CrossRefGoogle Scholar
  34. Halonen, P., Meurman, O., Lovgren, T., Hemmila, I., and Soini, E., 1983. Detection of viral antigens by time—resolved fluoroimmunoassay. curr. Top. Microbiol. Immunol. 133–146.Google Scholar
  35. Jordan, R., Konai, M., Lee, I.M. and Davis, R. E., 1985. Production and characterization of monoclonal antibodies to Spiroplasma citri and corn stunt spiroplasma. Phytopathology 75, 1351.Google Scholar
  36. Kendall, C., Ionescu-Matiu, I. and Dreesman, G.R., 1983. Utilization of the biotin avidin system to amplify the sensitivity of the enzyme—linked immunosorbent assay (ELISA). J. Immunol. Meth. 56, 329–339.CrossRefGoogle Scholar
  37. Kohler, G. and Milstein, C., 1975. Continuous culture of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.PubMedCrossRefGoogle Scholar
  38. Kotani, H. and McGarrity, G.J., 1985. Rapid and simple identification of mycoplasmas by immunobinding. J. Immunol. Meth. 85, 257–267.CrossRefGoogle Scholar
  39. Lankow, R.K., Woodhead, S.H., Patterson, R.J., Massey, R. and Schochetman, G., 1984. Monoclonal antibody diagnostics in plant disease management. Plant Dis. 68, 1100–1101.Google Scholar
  40. Leary, J.L., Brigati, D.J. and Ward, D.C., 1983. Bioblots: Rapid and sensitive colorimetric method for visualizing biotin-labelled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose. Proc Natl. Acad. Sei. USA 80, 4045–4049.CrossRefGoogle Scholar
  41. Lei, J.D. and Chen, T.A., 1985. Detection of specific protein of spiroplasmas with monoclonal antibodies to Spiroplasma citri Phytopathology 75, 1351.Google Scholar
  42. Lin, C.P. and Chen, T.A., 1985a. 13 Monoclonal antibodies to specific epitopes on Spiroplasma citri. Phytopathology 74, 798.Google Scholar
  43. Lin, C.P. and Chen, T.A., 1985b. Production of monoclonal antibodies against Spiroplasma citri. Phytopathology 75, 848–851.CrossRefGoogle Scholar
  44. Lin, C.P. and Chen, T.A., 1985c. Monoclonal antibodies against corn stunt spiroplasma. Can. J. Microbiol. 31, 900–904.CrossRefGoogle Scholar
  45. Lin, C.P. and Chen T.A., 1985d. Monoclonal antibodies against the aster yellows agent. Science 227, 1233–1235.PubMedCrossRefGoogle Scholar
  46. Lin, C.P. and Chen, T.A., 1986. Comparison of monoclonal antibodies and polyclonal antibodies in detection of the aster yellows mycoplasma-like organism. Phytopathology 76, 45–50.CrossRefGoogle Scholar
  47. Lin, N.S., 1984. Gold-IgG complexes improve the detection and identification of viruses in leaf dip preparations. J. Virol. Meth. 8, 181–190.CrossRefGoogle Scholar
  48. Lovborg, U., 1982. Monoclonal antibodies. Production and maintenance, pp. 66. William Heinemann Medical Books, London.Google Scholar
  49. Matikaine, M.T. and Lehtonen, O.P., 1984. Relation between avidity and specificity of monoclonal anti—chlamydial antibodies in culture supernatants and ascitic fluids determined by enzyme immunoassay. J. Immunol. Meth. 72, 341–347.CrossRefGoogle Scholar
  50. McGarrity, G.J., Kenneth, R., Megraud, F. and Buck, D., 1983. Preparation of monoclonal antibodies against mycoplasmas, acholeplasmas and spiroplasmas. Yale J. Biol. Med. 56, 860–861.Google Scholar
  51. Milne, R.G. and Lesemann, D.E., 1984. Immunosorbent electron microscopy in plant virus studies. In: Methods in Virology, Maramorosch, K., Koprowski, H., (eds.) Vol. 8, 85–101. Academic Press, New York.Google Scholar
  52. Morse, J.W., Boothby, J.T. and Yamamoto, R., 1986. Detection of Mycoplasma gallisepticum by direct immunofluorescence using a species-specific monoclonal antibody. Avian Dis. 30, 204–206.PubMedCrossRefGoogle Scholar
  53. Mouches, C, Candresse, T., Barroso, G., Saillard, C., Wroblewski, H. and Bove, J.M., 1985. Gene for spiral in, the major membrane protein of the helical mollicute Spiroplasma citri: cloning and expression in Escherichia coli. J. Bacteriol. 164, 1094–1099.PubMedGoogle Scholar
  54. Mouches, C., Candresse, T., McGarrity and G.J., Bove, J.M., 1983. Analysis of spiroplasma proteins: Contribution to the taxonomy of group IV spiroplasma and the characterization of spiroplasma protein antigen. Yale J. Biol. Med. 56, 451–457.Google Scholar
  55. Nakane, P.K. and Pierce, G.G., 1966. Enzyme-labelled antibodies: Preparation and application for the localization of antigens. J. Histochem. Cytochem. 14, 929–931.PubMedCrossRefGoogle Scholar
  56. Pares, R.D. and Whitecross, W.I., 1982. Gold-labelled antibody decoration (GLAD) in the diagnosis of plant viruses by immunoelectron microscopy. J. Immunol. Meth. 51, 23–28.CrossRefGoogle Scholar
  57. Raab-Traub, N. and Pagano, J.S., 1984. Hybridization of viral nucleic acids: Newer methods on solid media and in solution. In: Methods in Virology (Maramorosch, K., Koprowski, H. (eds.) Vol. 8, pp. 1–39. Academic Press, New York.Google Scholar
  58. Raju, B.C. and Nyland, G., 1981. Enzyme-linked immunosorbent assay for the detection of corn stunt spiroplasma in plant and insect tissues. Curr. Microbiol. 5, 101–104.CrossRefGoogle Scholar
  59. Reich. P.R. Somerson, N.L., Hybner, C.J. Chanock, R.M. and Weissman, S.M., 1966. Genetic differentiation by nucleic acid homology. I. Relationships among Mycoplasma species of man. J. Bacteriol. 92, 302–310.PubMedGoogle Scholar
  60. Richman, D.D., Cleveland, P.H., Redfield, D.C., Oxman, M.N. and Wahl, G.M., 1984. Rapid viral diagnosis. J. Infect. Dis. 149, 298–310.PubMedCrossRefGoogle Scholar
  61. Saillard, C. and Bove, J.M., 1983. Application of ELISA to spiroplasma detection and classification. In: Methods in Mycoplasmology. Razin, S., Tully, J.G., (eds.) Vol. 1, pp. 471–476. Academic Press, New York.Google Scholar
  62. Saillard, C., Dunez, J., Garcia-Jurado, 0, Nhami, A. and Bove, J.M., 1978. Detection de Spiroplasma citri dans les agrumes et les pervenches par la technique immunoenzymatique “ELISA”. C.R. Hebd. Seanes Acad. Sei. 286, 1245–1248.Google Scholar
  63. Sinha, R.C. and Benhamou, N., 1983. Detection of mycoplasma-like organism antigens from aster yellows-diseased plants by two serological procedures. Phytopathology 73, 1 199–1202.Google Scholar
  64. Sinha, R.C. and Chiykowski, L.N., 1984. Purification and serological detection of myco-plasma—like organisms from plants affected by peach eastern X-disease. Can. J. Plant Pathol. 6, 200–205.CrossRefGoogle Scholar
  65. Soini, E. and Kojola, H., 1983. Time—resolved fluorometer for lanthanide chelates—a new generation of non-isotopic immunoassays. Clin. Chem. 29, 65–68.PubMedGoogle Scholar
  66. Somerson, N.L., Reich, P.R., Walls, B.E., Chanock, R.M. and Weissman, S.M., 1966. Genetic differentiation by nucleic acid homology. II. Genotyplc variations within two Mycoplasma species. J. Bacteriol. 92, 311–317.PubMedGoogle Scholar
  67. Stanbridge, E.J. and Reff, M.E., 1979. The molecular biology of mycoplasma, pps. 157–187. In: The Mycoplasmas, Barile, M.F., Razin, S. (eds.) Vol. 1, Academic Press,New York.Google Scholar
  68. Symons, R.H., 1984. Diagnostic approaches for the rapid and specific detection of plant viruses and viroids. In: Plant Microbe Interactions; 1 Molecular and Genetic Perspectives. Kosuge, T., Nester, E.W. (eds.) pp. 93–124. MacMillan, New York.Google Scholar
  69. Taylor, M.A., Wise, K.S. and Mcintosh, M.A., 1984. Species-specific detection of Mycoplasma hyorhinis using DNA probes. Isr. J. Med. Sei. 20, 778–780.Google Scholar
  70. Taylor, M.A., Wise, K.S. and Mcintosh, M.A., 1985. Selective detection of Mycoplasma hyorhinis using clones genomic DNA fragments. Infect. Immun. 47, 827–830.PubMedGoogle Scholar
  71. Taylor-Robinson, D., 1983. Metabolic inhibition tests. In: Methods in Mycoplasmology. Razin, S., Tully, J.G., (eds.) Vol. 1, pp. 411–418. Academic Press, New York.Google Scholar
  72. Townsend, R., 1983. Mycoplasma-like organisms from plants with ‘yellows’ disease lack a spiroplasma-specific antigen. J. Gen. Micro-biol. 129, 1959–1964.Google Scholar
  73. Townsend, R., Burgess, J. and Piaskitt, K.A., 1980. Morphology and ultrastructure of helical and non-helical strains of Spiroplasma citri. J. Bacteriol. 142, 973–981.PubMedGoogle Scholar
  74. Townsend, R. and Piaskitt, K.A., 1985. Immunogold localization of p55-fibril protein and p25 spiral in in spiroplasma cells. J. Gen. Microbiol. 131, 983–992.Google Scholar
  75. Tully, J.G., Rose, D.L., Garcia-Jurado, 0, Vignault, J.C., Saillard, C., Bove, J.M., McCoy, R.E. and Williamson, D.L., 1980. Serological analysis of a new group of spiroplasmas. Curr. Microbiol. 3, 369–372.CrossRefGoogle Scholar
  76. Van Lent, J.W.M. and Verduin, B.J.M., 1985. Specific gold labeling of antibodies bound to plant viruses in mixed suspensions. Neth. J. Plant Pathol. 91, 205–213.CrossRefGoogle Scholar
  77. Whitcomb, R.F., 1980. The genus of spiroplasmas. Annu. Rev. Microbiol. 34, 677–709.PubMedCrossRefGoogle Scholar
  78. Whitcomb, R.F., Tully, J.G., Clark, T.B., Williamson, D.L. and Bove, J.M., 1982a. Revised serological classification of spiroplasmas, new provisional groups and recommendations for serotyping of isolates. Curr. Microbiol. 7, 291–296.CrossRefGoogle Scholar
  79. Whitcomb, R.F., Tully, J.G., McCawley, P. and Rose, D.L., 1982b. Application of the growth inhibition test to Spiroplasma taxonomy. Int. J. Syst. Bacteriol. 32, 387–394.CrossRefGoogle Scholar
  80. Whitcomb, R.F., Tully, J.G. and Wroblewski, H., 1983b. Spiral in: major membrane protein specific for subgroup 1–1 spiroplasmas. Curr. Microbiol. 9, 7–12.CrossRefGoogle Scholar
  81. Whitcomb, R.F., J.G. Tully, J.M. Bové and P. Saglio. 1973. Spiroplasmas and Acheloplasmas: multiplication in insects Science 182: 1251–1252.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • C. Hiruki
    • 1
  1. 1.Department of Plant ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations