Spinal Cord Potentials (SCPs) Produced by Descending Volleys in Man

  • K. Shimoji
  • H. Fujioka
  • Y. Maruyama
  • H. Shimizu
  • T. Hokari
  • T. Takada


Experiments in animals have demonstrated that dorsal root potentials (DRPs) or cord dorsum positive waves can be produced by stimulation of the cerebral cortex or brain stem (1–5). Direct stimulation of the dorsal surface of the cord has also been shown to evoke cord dorsum negative-positive complexes over the lumbosacral enlargement in experimental animals (6).


Dorsal Horn Stimulus Strength Primary Afferent Depolarization Lumbar Enlargement Spinal Cord Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, P.; Eccles, J.C.; Sears, T.A.: Presynaptic inhibitory action of cerebral cortex on the spinal cord. Nature (Lond.), 194: 740–741, 1962.CrossRefGoogle Scholar
  2. 2.
    Carpenter, D.; Engberg, I.; Lundberg, A.: Presynaptic inhibition in the lumbar cord evoked from the brain stem. Experientia, 18: 450–451, 1962.PubMedCrossRefGoogle Scholar
  3. 3.
    Besson, J.M.; Rivot, J.P.: Spinal interneufones involved in presynaptic controls of supraspinal origin. J. Physiol. (Lond.), 230: 235–254, 1973.Google Scholar
  4. 4.
    Engberg, I.; Lundberg, A.; Ryall, R.W.: Reticulospinal inhibition of transmission in reflex pathways. J. Physiol. (Lond.), 194: 201–223, 1968.Google Scholar
  5. 5.
    Martin, R.F.; Haber, L.H.; Willis, W.D.: Primary afferent depolarization of identified cutaneous fibers following stimulation in medial brain stem. J. Neurophysiol., 42: 779–790, 1979.PubMedGoogle Scholar
  6. 6.
    Foreman, R.D.; Beall, J.E.; Applebaum, A.E.; Coulter, J.D.; Willis, W.D.: Effects of dorsal column stimulation on primate spinothalamic tract neurons. J. Neurophysiol., 39: 534–546, 1976.PubMedGoogle Scholar
  7. 7.
    Shimizu, H.; Shimoji, K.; Maruyama, Y.; Sato, Y.; Harayama, H.; Tsubaki, T.: Slow cord dorsum potentials elicited by descending volleys in man. J. Neurol. Neurosurg. Psychiatry, 42: 242–246, 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Shimizu, H.; Shimoji, K.; Maruyama, Y.; Sato, Y.; Kuribayashi, H.: Interaction between human evoked electrospinograms elicited by segmental and descending volleys. Experientia, 35: 1199–1200, 1979.PubMedCrossRefGoogle Scholar
  9. 9.
    Shimizu, H.; Shimoji, K.; Maruyama, Y.; Matsuki, M.; Kuribayashi, H.; Fujioka, H.: Human spinal cord potentials produced in lumbosacral enlargement by descending volleys. J. Neurophysiol., 48: 1108–1120, 1982.PubMedGoogle Scholar
  10. 10.
    Barron, D.H.; Matthews, B.H.C.: The interpretation of potential changes in the spinal cord. J. Physiol. (Lond.), 92: 276–321, 1938.Google Scholar
  11. 11.
    Bernhard, C.G.; Widen, L.: On the origin of the negative and positive cord potentials evoked by stimulation of low threshold cutaneous fibres. Acta. Physiol. Scand. 29, Suppl. 106: 42–54, 1953.Google Scholar
  12. 12.
    Eccles, J.C.; Kostyuk, P.G.; Schmidt, R.F.: Central pathways responsible for depolarization of primary afferent fibres. J. Physiol. (Lond.), 161: 237–257, 1962.Google Scholar
  13. 13.
    Koketsu, K.: Intracellular potential changes of primary afferent nerve fibers in spinal cord of cats. J. Neurophysiol., 19: 375–392, 1956.PubMedGoogle Scholar
  14. 14.
    Carpenter, D.O.; Rudomin, P.: The organization of primary afferent depolarization in the isolated spinal cord of the frog. J. Physiol. (Lond.), 229: 471–493, 1973.Google Scholar
  15. 15.
    Austin, G.M.; McCouch, G.P.: Presynaptic component of intermediary cord potential. J. Neurophysiol., 18: 441–451, 1955.PubMedGoogle Scholar
  16. 16.
    Beall, J.E.; Applebaum, A.E.; Foreman, R.D.; Willis, W.D.: Spinal cord potentials evoked by cutaneous afferents in the monkey. J. Neurophysiol., 40: 199–211, 1977.PubMedGoogle Scholar
  17. 17.
    Maruyama, Y.; Shimoji, K.; Shimizu, H.; Kuribayashi, H.; Fujioka, H.: Human spinal cord potentials evoked by different sources of stimulation and conduction velocities along the cord. J. Neurophysiol., 48: 1098–1107, 1982.PubMedGoogle Scholar
  18. 18.
    Shimoji, K.; Kitamura, H.; Ikezono, E.; Shimizu, H.; Okamoto, K.; Iwakura, Y.: Spinal hypalgesia and analgesia by low-frequency electrical stimulation in the epidural space. Anesthesiology, 41: 91–94, 1974.PubMedCrossRefGoogle Scholar
  19. 19.
    Shimoji, K.; Matsuki, M.; Shimizu, H.; Iwane, T.; Takahashi, R.; Maruyama, M.; Masuko, K.: Low-frequency, weak extradural stimulation in the management of intractable pain. Brit. J. Anesth., 49: 1081–1086, 1977.CrossRefGoogle Scholar
  20. 20.
    Shimoji, K.; Shimizu, H.; Maruyama, Y.; Matsuki, M.: Dorsal column stimulation in man: Facilitation of primary afferent depolarization. Anesth. Analg., 61: 410–413, 1982.PubMedCrossRefGoogle Scholar
  21. 21.
    Handwerker, H.O.; Iggo, A.; Zimmermann, M.: Segmental and supraspinal actions on dorsal horn neurons responding to noxious and non-noxious skin stimuli. Pain, 1: 147–165, 1975.PubMedCrossRefGoogle Scholar
  22. 22.
    Hillman, P.; Wall, P.D.: Inhibitory and excitatory factors influencing the receptive fields of lamina 5 spinal cord cells. Exp. Brain Res., 9: 284–306, 1969.PubMedGoogle Scholar
  23. 23.
    Martin, G.F.; Humberston, A.O.; Laxson, C.; Panneton, W.M.: Evidence for direct bulbospinal projections to laminae IX, X and the intermediolateral cell column. Studies using axonal transport techniques in the North American opossum. Brain Res., 170: 165–171, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Mendell, L.: Properties and distribution of peripherally evoked presynaptic hyperpolarization in cat lumbar spinal cord. J. Physiol. (Lond.), 226: 769–792, 1972.Google Scholar
  25. 25.
    Shimoji, K.; Maruyama, Y.; Shimizu, H.; Fujioka, H.; Taga, K.: Spinal cord monitoring—A review of current techniques and knowledge. In: J. Schramm; S.J. Jones (eds), Spinal Cord Monitoring, Springer-Verlag, Berlin, 1985.Google Scholar
  26. 26.
    Sastry, B.R.; Goh, J.W.; Auyeung, A.: Associative induction of post tetanic and long-term potentiation in CAI neurons of rat hippocampus. Science, 232: 988–990, 1986.PubMedCrossRefGoogle Scholar
  27. 27.
    Brown, T.H.; McAfee, D.A.: Long-term synaptic potentiation in the superior cervical ganglion. Science, 215: 1411–1413, 1982.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • K. Shimoji
    • 1
  • H. Fujioka
  • Y. Maruyama
  • H. Shimizu
  • T. Hokari
  • T. Takada
  1. 1.Department of AnesthesiologyNiigata University School of MedicineNiigataJapan

Personalised recommendations