Advertisement

Development of a Model for DNA Supercoiling

  • Stephen C. Harvey
  • Robert K.-Z Tan

Abstract

The supercoiling of closed circular DNA in vivo is regulated by a class of enzymes called topoisomerases, and it is known to play an important role in gene expression. Negative supercoiling can be induced in vitro by DNA gyrase, or by unwinding the double helix with intercalating drugs, followed by relaxation with topoisomerase and then removal of the intercalator. Supercoiling pressure is often used to promote the formation of unusual DNA structures, for example, Z-DNA and cruciforms. The study of DNA supercoiling is thus an important problem biologically and because of its use as an agent for inducing other structures. The topological issues surrounding DNA supercoiling have been extensively studied (Benham, 1985; 1986; White and Bauer, 1986), and they have been applied to the explanation of a number of events in recombination (Wasserman et al, 1985; Cozzarelli et al, 1985; Geliert and Nash, 1987).

Keywords

Double Helix Roll Angle Twist Angle Potential Energy Function Harmonic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benham, C.J. (1977) Proc. Natl. Acad. Sci. USA 74, 2397–2401.PubMedCrossRefGoogle Scholar
  2. Benham, C.J. (1985) Ann. Rev. Biophys. Biophys. Chem. 14, 23–45.CrossRefGoogle Scholar
  3. Benham, C.J. (1986) Comments Mol. Cell. Biophys. 4, 35–54.Google Scholar
  4. Brady, G.W., Fein, D.B., Lambertson, H., Grassian, V., Foos, D., and Benham, C.J. (1983) Proc. Natl. Acad. Sci. USA 80, 741–744.PubMedCrossRefGoogle Scholar
  5. Brady, G.W., Foos, D., and Benham, C.J. (1984) Biopolymers 23, 2963–2966.PubMedCrossRefGoogle Scholar
  6. Cozzarelli, N.R., Krasnow, M.A., Gerrard, S.P., and White, J.H. (1985) Cold Spring Harbor Symp. Quant. Biol. 49, 383–399.Google Scholar
  7. Fratini, A.V., Kopka, M.L., Drew, H.R., and Dickerson, R.E. (1982) J. Biol. Chem. 257, 14686–14707.PubMedGoogle Scholar
  8. Geliert, M. and Nash, H. (1987) Nature 325, 401–404.CrossRefGoogle Scholar
  9. Hagerman, P.J. (1984) Proc. Natl. Acad. Sci. USA 81, 4632–4636.PubMedCrossRefGoogle Scholar
  10. Hagerman, P.J. (1986) Nature 321, 449–450.PubMedCrossRefGoogle Scholar
  11. Harvey, S.C., Prabhakaran, M., Mao, B., and McCammon, A. (1984) Science 223, 1189–1191.PubMedCrossRefGoogle Scholar
  12. Harvey, S.C., Prabhakaran, M., and McCammon, J.A. (1985) Biopolymers 24, 1169–1188.PubMedCrossRefGoogle Scholar
  13. Harvey, S.C. (1986) Comments Mol. Cell. Biophys. 3, 219–239.Google Scholar
  14. Koo, H.-S., Wu, H.-M., and Crothers, D.M. (1986) Nature 320, 501–506.PubMedCrossRefGoogle Scholar
  15. Le Bret, M. (1978) Biopolymers 17, 1939–1955.CrossRefGoogle Scholar
  16. Le Bret, M. (1979) Biopolymers 18, 1709–1725.PubMedCrossRefGoogle Scholar
  17. Levitt, M. (1983) Cold Spring Harbor Symp. Quant. Biol. 47, 251–262.PubMedGoogle Scholar
  18. Marini, J.C., Effron, P.N., Goodman, T.C., Singleton, C.K., Wells, R.D., Warteil, R.M., and Englund, P.T. (1984) J. Biol. Chem. 259, 8974–8979.PubMedGoogle Scholar
  19. McCammon, J.A. and Harvey, S.C. (1987) “Dynamics of Proteins and Nucleic Acids” (Cambridge University Press, Cambridge England).Google Scholar
  20. Olson, W.K., Markey, N.L., Srinivasan, A.R., Do, K.D., and Cicariello, J. (1985) in “Molecular Basis of Cancer, Part A: Macromolecular Structure, Carcinogens, and Oncogenes” (R. Rein, Ed., Alan R. Liss, New York), pp. 109–121.Google Scholar
  21. Prabhakaran, M. and Harvey, S.C. (1985) J. Phys. Chem. 89, 5767–5769.CrossRefGoogle Scholar
  22. Selepova, P. and Kypr, J. (1985) Biopolymers 24, 867–882.PubMedCrossRefGoogle Scholar
  23. Singh, U.C., Weiner, S.J., and Kollman, P. (1985) Proc. Natl. Acad. Sci. USA 82, 755–759.PubMedCrossRefGoogle Scholar
  24. Tanaka, F. and Takahaski, H. (1986) J. Chem. Phys. 83, 6017–6026.CrossRefGoogle Scholar
  25. Tidor, B., Irikura, K.K., Brooks, B.R., and Karplus, M. (1983) J. Biomol. Struc. and Dynamics 1, 231–252.Google Scholar
  26. Trifonov, E.N. (1985) CRC Crit. Revs. Biochem. 19, 89–106.CrossRefGoogle Scholar
  27. Tsuru, H. and Wadati, M. (1986) Biopolymers 25, 2083–2096.PubMedCrossRefGoogle Scholar
  28. Tung, C.-S. and Harvey, S.C. (1986) J. Biol. Chem. 261, 3700–3709.PubMedGoogle Scholar
  29. Vinograd, J. and Lebowitz, J. (1965) J. Gen. Physiol. 49, 103–125.CrossRefGoogle Scholar
  30. Wasserman, S.A., Dungan, J.M., and Cozzarelli, N.R. (1985) Science 229, 711–174.CrossRefGoogle Scholar
  31. Westhof, E., Chevrier, B., Gallion, S.L., Weiner, P.K., and Levy, R.M. (1986) J. Mol. Biol. 190, 699–712.CrossRefGoogle Scholar
  32. White, J.H. and Bauer, W.R. (1986) J. Mol. Biol. 189, 329–341.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1988

Authors and Affiliations

  • Stephen C. Harvey
    • 1
  • Robert K.-Z Tan
    • 1
  1. 1.Department of BiochemistryUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations