Skip to main content

Torsional Stress, Unusual DNA Structures, and Eukaryotic Gene Expression

  • Chapter
Unusual DNA Structures

Abstract

Torsional stress in DNA plays a significant role in regulating gene expression in prokaryotes. It has been known for more than a decade that different promoters show a differential response to the level of in vivo supercoiling in E. coli (Smith et al., 1978), and extensive studies indicate that the in vivo level of supercoiling itself is tightly regulated (Menzel and Geliert, 1983). In E. coli and other bacteria the amount of torsional stress is sufficient (Sinden et al., 1980) to favor the formation of locally untwisted alternate DNA structures. The energetic cost of forming these from the normal unconstrained DNA double helix is more than compensated for by relief of some of the excess torsional tension in the DNA (Cantor and Efstratiadis, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barsoum, J. and P. Berg (1985). Simian virus 40 minichromosomes contain torsionally strained DNA molecules. Molec. Cell. Biol. 5:3048–3057.

    PubMed  CAS  Google Scholar 

  • Benoist, C. and P. Chambon (1981). In vivo sequence requirements for the SV40 early promoter region. Nature (London) 290:304–310.

    Article  CAS  Google Scholar 

  • Bramachari, S.K., Y.S. Shouche, C.R. Cantor and M. McClelland (1987). Sequences that adopt non-B-DNA conformation in form V DNA as probed by enzymatic methylation. J. Mol. Biol. 193:201–212.

    Article  Google Scholar 

  • Cantor, C.R. and A. Efstratiadis (1984). Possible structures of homopurine-homopyrimidine S1-hypersensitive sites. Nucl. Acids Res. 12:8059–8072.

    Article  PubMed  CAS  Google Scholar 

  • Depew, R.E. and J.C. Wang (1975). Conformational fluctuations of DNA helix. Proc. Natl. Acad. Sci. USA 72:4275–4279.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, P.K. and P. Lebowitz (1981). Simian virus 40 early mRNA’s contain multiple 5′ termini upstream and downstream from a Hogness-Goldberg sequence: a shift in 5′ termini during the lytic cycle is mediated by large T antigen. J. Virol. 40:224–240.

    PubMed  CAS  Google Scholar 

  • Hansen, U., D.G. Tanen, D.M. Livingston and P.A. Sharp (1981). T antigen repression of SV40 early transcription from two promoters. Cell 27:603–612.

    Article  PubMed  CAS  Google Scholar 

  • Harland, R.M., H. Weintraub and S.L. McKnight (1983). Transcription of DNA injected into Xenopus oocytes is influenced by template topology. Nature 302:38–43.

    Article  PubMed  CAS  Google Scholar 

  • Hen, R., P. Sassone-Corsi, J. Corden, M.P. Gaub and P. Chambon (1982). Sequences upstream from the T–-T– box are required in vivo and in vitro for efficient transcription from the adenovirus serotype 2 major late in promoter. Proc. Natl. Acad. Sci. USA 79:7132–7136.

    Article  PubMed  CAS  Google Scholar 

  • Horowitz, D.S. and J. Wang (1983). Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J. Mol. Biol. 173:75–91.

    Article  Google Scholar 

  • Hovatter, K.R. and H.G. Martinson (1987). Ribonucleotide-induced helical alteration in DNA prevents nucleosome formation. Proc. Natl. Acad. Sci. USA 84:1162–1166.

    Article  PubMed  CAS  Google Scholar 

  • Jove, R., D.E. Sperber and J.L. Manley (1984). Transcription of methylated eukaryotic viral genes in a soluble in vitro system. Nucleic Acids Res. 11:4715–4730.

    Article  Google Scholar 

  • Luchnik, A.N., V.V. Bakayev, I.B. Zbarskey and G.P. Georgiev (1982). Elastic torsional strain in DNA within a fraction of SV40 minichromosomes; relation to transcriptionally active chromatin. EMBO J. 1:1353–1358.

    PubMed  CAS  Google Scholar 

  • Luchnik, A.N., V.V. Bakayev, A.A. Yugai, I.B. Zbarsky and G.P. Georgiev (1985). DNAasel-hypersensitive minichromosomes of SV40 possess an elastic torsional strain in DNA. Nucl. Acids Res. 13 1135–1149.

    Article  CAS  Google Scholar 

  • Manley, J.L., A. Fire, A. Cano, P.A. Sharp and M.L. Gefter (1980). DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl. Acad. Sci. USA 77:3855–3859.

    Article  PubMed  CAS  Google Scholar 

  • Manley, J.L., A. Fire, M. Samuels and P.A. Sharp (1983). In vitro transcription: whole-cell extract. Methods Enzymol. 101:568–582.

    Article  PubMed  CAS  Google Scholar 

  • Mentzel R. and M. Gellert (1983). Regulation of the genes for E. coli DNA gyrase; homeostatic control of DNA supercoiling. Cell 34:105–113.

    Article  Google Scholar 

  • Mertz, J.E. (1982). Linear DNA does not form chromatin containing regularly spaced nucleosomes. Mol. Cell. Biol. 2:1608–1618.

    PubMed  CAS  Google Scholar 

  • Morse, R.H. and C.R. Cantor (1985). Nucleosome core particles suppress the thermal untwisting of core DNA and adjacent linker DNA. Proc. Natl. Acad. Sci. USA 82:4653–4657.

    Article  PubMed  CAS  Google Scholar 

  • Morse, R.H. and C.R. Cantor (1986). Effect of trypsinization and histone H5 addition on DNA twist and topology is reconstituted minichromosomes. Nucl. Acids Res. 14:3293–3310.

    Article  PubMed  CAS  Google Scholar 

  • Peck, L.J. and J.C. Wang (1983). Energetics of B-to-Z transition in DNA. Proc. Natl. Acad. Sci. USA 80:6206–6210.

    Article  PubMed  CAS  Google Scholar 

  • Petryniak, B. and L.C. Lutter (1987). Topological characterization of the Simian virus 40 transcription complex. Cell 48:289–295.

    Article  PubMed  CAS  Google Scholar 

  • Pulleybank, D.E., M. Shure, D. Tang, J. Vinograd and H.P. Vosberg (1975). Proc. Natl. Acad. Sci. USA 72:4280–4284.

    Article  Google Scholar 

  • Ryoji, M. and A. Worcel (1984). Chromatin assembly in Xenopus oocytes; in vivo studies. Cell 37:21–32.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, D. and C.R. Cantor (1984). Separation of yeast chromosome-sized DNAs by pulsed field gel electrophoresis. Cell 37:67–75.

    Article  PubMed  CAS  Google Scholar 

  • Sergeant, A., D. Bohmann, H. Zentgraf, H. Weiher and W. Keller (1984). A transcription enhancer acts in vitro over distances of hundreds of base-pairs on both circular and linear templates but not on chromatin-reconstituted DNA. J. Mol. Biol. 180:577–600.

    Article  PubMed  CAS  Google Scholar 

  • Shore, D. and R.L. Baldwin (1983). Energetics of DNA twisting: II.Topoisomer analysis. J. Mol. Biol. 170:983–1007.

    Article  PubMed  CAS  Google Scholar 

  • Sinden, R.R., J.O. Carlson and D.E. Pettijohn (1980). Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells; analogous measurements in insect and human cells. Cell 21:773–783.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.L., M. Kubo and F. Imamoto (1978). Promoter-specific inhibition of transcription by antibiotics which act on DNA gyrase. Nature 275:420–423.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.L., P.W. Warburton, A. Gaal and C.R. Cantor (1986). Analysis of genome organization and rearrangements by pulsed field gradient gel electrophoresis. In, Genetic Engineering 8:(ed. J.K. Setlow and A. Hollaender), Plenum, New York, pps. 45–70.

    Google Scholar 

  • Stirtivant, S.M., J. Klysick and R.D. Wells (1982). Energetic and structural inter-relationships between DNA supercoiling and the right-to left handed Z helix transitions in recombinant plasmids. J. Biol. Chem. 257:10159–10165.

    Google Scholar 

  • Vardimon and A. Rich (1984). In Z-DNA the sequence of G-C-G-C is neither methylated by Hha I methyltransferase nor cleaved by Hha I restriction endonuclease. Proc. Natl. Acad. Sci. USA 81:3268–3272.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, H., P.F. Chang and K. Conrad (1986). Expression of Transfected DNA Depends on DNA topology. Cell 46:115–122.

    Article  PubMed  CAS  Google Scholar 

  • Zacharias, W., J.E. Larson, M.W. Kilpatrick and R.D. Wells (1984). Hhal methylase and restriction endonulease as probes for B to Z DNA conformational changes in d(GCGC)sequences. Nucl. Acids Res. 12:7677–7692.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Cantor, C.R. et al. (1988). Torsional Stress, Unusual DNA Structures, and Eukaryotic Gene Expression. In: Wells, R.D., Harvey, S.C. (eds) Unusual DNA Structures. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3800-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3800-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8357-7

  • Online ISBN: 978-1-4612-3800-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics