Sequence-Dependent Curvature of DNA

  • Paul J. Hagerman


A large variety of DNA molecules, derived as restriction fragments from both prokaryotic (Ross et al., 1982; Stellwagen, 1983; Bossi and Smith, 1984; Zahn and Blattner, 1985) and eukaryotic (Simpson, 1979; Challberg and England, 1980; Israelewski, 1983; Schmidt, 1984; Kidane et al., 1984; Garrett and Carroll, 1986; Ray et al., 1986; Ryder et al., 1986) sources, display abnormal electrophoretic behavior. In particular, such molecules run more slowly in acrylamide gels than would be expected on the basis of their sizes (by sequence). An additional example of such electrophoretic behavior is displayed in figure 1. This example is of historical interest in that the HindII+III digest of SV40 was the first published restriction digest. The retardation of the F fragment was originally believed to be due to a chemical interaction of the fragment with the acrylamide gel. The example is also noteworthy in that the sequences giving rise to the anomalous behavior lie entirely within the coding sequences for the major capsid protein (VP1) gene.


Simian Virus Helix Axis Axial Curvature Junction Model Adjacent Base Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bossi, L. and Smith, D.M. (1984). Conformational change in the DNA associated with an unusual promoter mutation in a tRNA operon of Salmonella. Cell 39:643–652.PubMedCrossRefGoogle Scholar
  2. Buchman, A.R., Burnett, L. and Berg, P. (1981). The SV40 nucleotide sequence (appendix A): in DNA Tumor Viruses, J. Tooze, ed. Cold Spring Harbor Laboratory, N.Y., 799–842.Google Scholar
  3. Calladine, C.R. (1982). Mechanistics of sequence-dependent stacking of bases in B-DNA. J. Mol. Biol. 161:343–352.PubMedCrossRefGoogle Scholar
  4. Garrett, J.E. and Carroll, D. (1986). Txl: a transposable element from Xenopus laevis with some unusual properties. Mol. Cell. Biol. 6:933–941.PubMedGoogle Scholar
  5. Challberg, S.S. and England, P.T. (1980). Heteroeneity of minicircles in kinetoplast DNA of Leishmania tarentolae. J. Mol. Miol. 138:447–472.CrossRefGoogle Scholar
  6. Danna, K. and Nathans, D. (1971). Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc. Natl. Acad. Sci. USA 68:2913–2917.PubMedCrossRefGoogle Scholar
  7. Diekmann, S. and Wang, J.C. (1985). On the sequence determinants and flexibility of the kinetoplast DNA fragment with abnormal gel electrophoretic mobilities. J. Mol. Biol. 186:1–11.PubMedCrossRefGoogle Scholar
  8. Diekmann, S. (1986). Sequence specificity of curved DNA. FEBS Lett. 195:53–56.PubMedCrossRefGoogle Scholar
  9. Diekmann, S. (1987). Temperature and salt dependence of the gel migration anomaly of curved DNA fragments. Nucl. Acids Res. 15:247–265.PubMedCrossRefGoogle Scholar
  10. Dickerson, R.E. (1983). Base sequence and helix structure variation in B and A DNA. J. Mol. Biol. 166:419–441.PubMedCrossRefGoogle Scholar
  11. Fiers, W., Contreras, R., Haegeman, G., Rogiers, R., Van de Voorde, A., Van Heuverswyn, H., Van Herreweghe, J., Volckaert, G. and Ysebaert, M. (1978). Complete nucleotide sequence of SV40 DNA. Nature 273:113–120.PubMedCrossRefGoogle Scholar
  12. Frederick, C.A., Grable, J., Melia, M., Samudzi, C., Jen-Jacobson, L., Wang, B.-C, Greene, P., Boyer, H.W. and Rosenberg, J.M. (1984). Kinked DNA in crystalline complex with EcoRI endonuclease. Nature 309:327–331.PubMedCrossRefGoogle Scholar
  13. Griffith, J., Bleyman, M., Rauch, C.A., Kitchin, P.A. and Englund, P.T. (1986). Visualization of the bent helix in kinetoplast DNA by electron microscopy. Cell 46:717–724.PubMedCrossRefGoogle Scholar
  14. Hagerman, P.J. (1984a). Evidence for the existence of stable curvature of DNA in solution. Proc. Natl. Acad. Sci. USA 81:4632–4636.PubMedCrossRefGoogle Scholar
  15. Hagerman, P.J. (1984b) Application of Transient Electric Birefringence to the Study of DNA Structure: in Methods in Enzymology. C.H.W. Hirs and S.N. Timasheff, eds. Academic Press, Inc., New York, 198–219.Google Scholar
  16. Hagerman, P.J. (1985). Sequence dependence of the curvature of DNA: a test of the phasing hypothesis. Biochem. 24:7033–7037.CrossRefGoogle Scholar
  17. Hagerman, P.J. (1986). Sequence-directed curvature of DNA. Nature 321:449–450.PubMedCrossRefGoogle Scholar
  18. Israelewski, N. (1983). Structure and function of an AT-rich, interspersed repetitive sequence from Chironomus thum mi: solenoidal DNA, 142 bp palindrome-frame and homologies with the sequence for site-specific recombination of bacterial transposons. Nucl. Acids Res. 11:6985–6996.PubMedCrossRefGoogle Scholar
  19. Kidane, G.Z., Hughes, D. and Simpson, L. (1984). Sequence heterogeneity and anomalous electrophoretic mobility of kinetoplast minicircle DNA from Leishmania tarentolae. Gene 27:265–277.PubMedCrossRefGoogle Scholar
  20. Koo, H.S., Wu, H.M. and Crothers, D.M. (1986). DNA bending at adenine-thymine tracts. Nature 320:501–506.PubMedCrossRefGoogle Scholar
  21. Levene, S.D., Wu, H.M. and Crothers, D.M. (1986). Bending and flexibility of kinetoplast DNA. Biochem. 25:3988–3995.CrossRefGoogle Scholar
  22. Marini, J.C., Levene, S.D., Crothers, D.M. and Englund, P.T. (1982). Bent helical structure in kinetoplast DNA. Proc. Natl. Acad. Sci. USA 79:7664–7668;PubMedCrossRefGoogle Scholar
  23. Marini, J.C. and Englund, P.T. (1983). Correction. Proc. Natl. Acad. Sci. USA 80:7678.Google Scholar
  24. Mertz, J.E. and Berg, P. (1974). Viable deletion mutants of simian virus 40: selective isolation by means of a restriction endonuclease from Hemophilus parainfluenzae. Proc. Natl. Acad. Sci. USA 71:4879–4883.PubMedCrossRefGoogle Scholar
  25. Ray, D.S., Hines, J.C., Sugisaki, H. and Sheline, C. (1986). kDNA minicircles of the major sequence class of C. fasciculata contain a single region of bent helix widely separated from the two origins of replication. Nucl. Acids Res. 14:7953–7965.PubMedCrossRefGoogle Scholar
  26. Ross, W., Shulman, M. and Landy, A. (1982). Biochemical analysis of att-defective mutants of the phage lambda site-specific recombination system. J. Mol. Biol. 156: 505–529.PubMedCrossRefGoogle Scholar
  27. Ryder, K., Silver, S., Delucia, A.L., Fanning, E. and Tegtmeyer, P. (1986). An altered DNA conformation in origin region I is a determinant for the binding of SV40 large T antigen. Cell 44:719–725.PubMedCrossRefGoogle Scholar
  28. Schmidt, E.R. (1984). Clustered and interspersed repetitive DNA sequence family of Chironomus: the nucleotide sequence of the Cla-elements and of various flanking sequences. J. Mol. Biol. 178:1–15.PubMedCrossRefGoogle Scholar
  29. Seising, E., Wells, R.D., Alden, C.J. and Arnott, S. (1979). Bent DNA: Visualization of a base-paired and stacked A-B conformational junction. J. Biol. Chem. 254:5417–5422.Google Scholar
  30. Shore, D., Langowski, J. and Baldwin, R.L. (1981). DNA flexibility studied by covalent closure of short fragments into circles. Proc. Natl. Acad. Sci. USA 78:4833–4837.PubMedCrossRefGoogle Scholar
  31. Simpson, L. (1979). Isolation of Maxicircle component of kinetoplast DNA from hemoflagellate protozoa. Proc. Natl. Acad. Sci. USA 76:1585–1588.PubMedCrossRefGoogle Scholar
  32. Stellwagen, N.C. (1983). Anomalous electrophoresis of deoxyribonucleic acid restriction fragments on Polyacrylamide gels. Biochem. 22:6186–6193.CrossRefGoogle Scholar
  33. Trifonov, E.N. and Sussman, J.L. (1980). The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc. Natl. Acad. Sci. USA 77:3816–3820.PubMedCrossRefGoogle Scholar
  34. Ulanovsky, L., Bodner, M., Trifonov, E.N. and Choder, M. (1986). Curved DNA: design, synthesis, and circularization. Proc. Natl. Acad. Sci. USA 83:862–866.PubMedCrossRefGoogle Scholar
  35. Ulanovsky, L.E. and Trifonov, E.N. (1987). Curved DNA: Wedge components estimated. Nature (in press).Google Scholar
  36. Wing, R.M., Drew, H.R., Takano, T., Broka, C, Tanaka, S., Itakura, K. and Dickerson, R.E. (1980). Crystal structure analysis of a complete turn of B DNA. Nature 287:755–758.PubMedCrossRefGoogle Scholar
  37. Wu, H.M. and Crothers, D.M. (1984). The locus of sequence-directed and protein-induced DNA bending. Nature 308:509–513.PubMedCrossRefGoogle Scholar
  38. Zahn, K. and Blattner, F.R. (1985). Sequence-induced DNA curvature at the bacteriophage lambda origin of replication. Nature 317:451–453.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1988

Authors and Affiliations

  • Paul J. Hagerman
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of Colorado Medical CenterDenverUSA

Personalised recommendations