Tissue Culture and Cryopreservation of Fetal Mammalian Endocrine Pancreas Intended for Transplantation

  • Stellan Sandler
  • Arne Andersson
  • Ingemar Swenne
  • Leif Jansson
  • Olle Korsgren
  • Annika Schnell Landström
  • L. A. Håkan Borg
  • Birger Petersson
  • Carl-Gustav Groth
  • Claes Hellerström


Transplantation of insulin-producing cells appears to be the ideal method to achieve perfect glycemic control in patients with insulin-dependent diabetes mellitus. Indeed, with the advent of new surgical techniques and improved immunosuppression therapy, whole or segmental adult pancreas transplantation has, during the last decade, become an increasingly successful treatment for these patients (1). However, it is already clear that the number of adult human pancreatic glands available is, and will remain, insufficient to meet the demands of patients requiring transplantation. It has therefore become necessary to explore the feasibility of transplanting other preparations of insulin-producing cells. One interesting source of β-cells in this context is the human fetal pancreas obtained from legal abortions. The exploration of this material as a source of transplantable tissue has been stimulated by the pioneering work of Brown and collaborators, which demonstrated that transplantation of syngeneic fetal rat pancreas reversed experimental diabetes mellitus in rats (2,3; see Introduction). The use of fetal pancreas transplantation in humans, however, introduces somewhat different problems from those encountered with transplants of the adult pancreas. The β-cell content of a single human fetal pancreas is not sufficient to immediately correct completely the hyperglycemia of an adult diabetic recipient, and thus successful outcome of the transplantation depends on significant expansion and differentiation of the implanted fetal β-cell mass.


Islet Cell Pancreatic Islet Endocrine Cell Endocrine Pancreas Fetal Pancreas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sutherland DER: Pancreas transplantation: An overview and current status of cases reported to the registry by mid-1983, in Andreani D, DiMario U, Federlin KF, Heding LG (eds): Immunology in Diabetes. London, Kimpton Medical Publications, 1984, pp 195–201.Google Scholar
  2. 2.
    Brown J, Molnar IG, Clark W, Mullen Y: Control of experimental diabetes mellitus in rats by transplantation of fetal pancreases. Science 1974; 184: 1377–1379.PubMedCrossRefGoogle Scholar
  3. 3.
    Mullen Y, Clark WR, Molnar IG, et al: Complete reversal of experimental diabetes mellitus in rats by a single fetal pancreas. Science 1976;195:68–70.CrossRefGoogle Scholar
  4. 4.
    Andersson A, Hellerström C: Metabolic characteristics of isolated pancreatic islets in tissue culture. Diabetes 1972;21(suppl 2):546–554.PubMedGoogle Scholar
  5. 5.
    Fuji S: Development of pancreatic endocrine cells in the rat fetus. Arch Histol Jap 1979;42:467–479.Google Scholar
  6. 6.
    Yoshinari M, Daikoku S: Ontogenetic appearance of immunoreactive endocrine cells in rat pancreatic islets. Anat Embryol 1982;165:63–70.PubMedCrossRefGoogle Scholar
  7. 7.
    McEvoy RC, Madson KL: Pancreatic insulin-, glucagon-and somatostatin-positive islet cell populations during the perinatal development of the rat. I. Morphometric quantitation. Biol Neonate 1980;38:248–254.PubMedCrossRefGoogle Scholar
  8. 8.
    Eriksson U, Swenne I: Diabetes in pregnancy: Growth of the fetal pancreatic β-cell in the rat. Biol Neonate 1982;42:239–248.PubMedCrossRefGoogle Scholar
  9. 9.
    Hellerström C, Lewis NJ, Borg H, et al: Method for large-scale isolation of pancreatic islets by tissue culture of fetal rat pancreas. Diabetes 1979;28:769–776.PubMedGoogle Scholar
  10. 10.
    Dudek RW, Freinkel N, Lewis NJ, et al: Morphologic study of cultured pancreatic fetal islets during maturation of the insulin stimulus-secretion mechanism. Diabetes 1980;29:15–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Amory B, Mourmeaux JL, Remacle C: In vitro cytodifferentiation of pancreatic islet cells within a tridimensional matrix of collagen, abstracted. Diabetologia 1986;29:513A.Google Scholar
  12. 12.
    Masquelier D, Amory B, Mourmeaux JL, Remacle C: Cell interactions during the in vitro neoformation of fetal rat pancreatic islets. Cell Differentiation 1986;18:199–211.PubMedCrossRefGoogle Scholar
  13. 13.
    Mourmeaux JL, Remacle C, Henquin JC: Morphological and functional characteristics of islet neoformed during tissue culture of fetal rat pancreas. Mol Cell Endocr 1985;39:237–246.CrossRefGoogle Scholar
  14. 14.
    McEvoy RC: Tissue culture of rat pancreatic islets: Quantitation of changes in the number of islet cells during culture, in Larner J, Pohl SL (eds): Methods in Diabetic Research. Vol 1: Laboratory Methods, part A. New York, John Wiley & Sons, 1984, pp 227–237.Google Scholar
  15. 15.
    McEvoy RC, Leung PE: Tissue culture of fetal rat islets: Comparison of serum-supplemented and serum-free, defined medium on the maintenance, growth, and differentiation of α, β, and δ cells. Endocrinology 1982;111: 1568–1575.PubMedCrossRefGoogle Scholar
  16. 16.
    McEvoy RC, Leung PE, Goggins JA: Tissue culture of fetal rat islets: Corticosterone promotes δ cell maintenance and function. Endocrinology 1981;108:2277–2282.PubMedCrossRefGoogle Scholar
  17. 17.
    Freinkel N, Lewis NJ, Johnson R, et al: Differential effects of age versus glycemic stimulation on the maturation of insulin stimulus-secretion coupling during culture of fetal rat islets. Diabetes 1984;33:1028–1038.PubMedCrossRefGoogle Scholar
  18. 18.
    Hellerström C: Growth patterns of pancreatic islets in animals, in Volk BW, Wellman KF (eds): The Diabetic Pancreas. New York, Plenum, 1977, pp 61–97.Google Scholar
  19. 19.
    Borg LAH, Andersson A: Long-term effects of glibenclamide on the insulin production, oxidative metabolism and quantitative ultrastructure of mouse pancreatic islets maintained in tissue culture at different glucose concentrations. Acta Diabetol Lat 1981;18:65–83.CrossRefGoogle Scholar
  20. 20.
    Swenne I: The cell cycle and growth regulation of pancreatic β-cells, in Larner J, Pohl S (eds): Methods in Diabetes Research, Volume 1: Laboratory Methods, part B. New York, John Wiley & Sons, 1984, pp 175–191.Google Scholar
  21. 21.
    Swenne I: Role of glucose in the in vitro regulation of cell cycle kinetics and proliferation in fetal pancreatic β-cells. Diabetes 1982;31:754–760.PubMedGoogle Scholar
  22. 22.
    Swenne I: Effects of aging on the regenerative capacity of the pancreatic β-cell of the rat. Diabetes 1983;34:14–19.CrossRefGoogle Scholar
  23. 23.
    Swenne I, Andersson A: Effect of genetic background on the capacity for islet cell replication in mice. Diabetologia 1984;27:464–467.PubMedCrossRefGoogle Scholar
  24. 24.
    Swenne I, Bone AJ, Howell SL, Hellerström C: Effects of glucose and amino acids on the biosynthesis of DNA and insulin in fetal rat islets maintained in tissue culture. Diabetes 1980;29:686–692.PubMedGoogle Scholar
  25. 25.
    Hellerström C, Swenne I: Growth patterns of pancreatic islets in animals, in Volk BW, Arquilla ER (eds): The Diabetic Pancreas, ed 2. New York, Plenum, 1985, pp 53–79.Google Scholar
  26. 26.
    King LK, Chick WL: Pancreatic beta cell replication: Effects of hexose sugars. Endocrinology 1976;99:1003–1009.PubMedCrossRefGoogle Scholar
  27. 27.
    King LK, Chick WL: Pancreatic β-cell replication: Regulation to insulin secretion. Endocrinology 1978;103:1321–1327.PubMedCrossRefGoogle Scholar
  28. 28.
    DeGasparo M, Milner GR, Norris PD, Milner RDG: Effect of glucose and amino acids on foetal rat pancreatic growth and insulin secretion in vitro. J Endocrinol 1978;77:241–248.CrossRefGoogle Scholar
  29. 29.
    Swenne I: Glucose-stimulated DNA replication of the islets during the development of the rat fetus. Effects of nutrients, growth hormone, and triiodothyronine. Diabetes 1985;34:803–807.PubMedCrossRefGoogle Scholar
  30. 30.
    Asplund K: Effects of intermittent glucose infusions in pregnant rats on the functional development of the foetal pancreatic β-cells. J Endocrinol 1973;59:285–293.PubMedCrossRefGoogle Scholar
  31. 31.
    Rabinovitch A, Quigley C, Rechler MM: Growth hormone stimulates islet β-cell replication in neonatal rat pancreatic monolayer cultures. Diabetes 1983;32:307–312.PubMedCrossRefGoogle Scholar
  32. 32.
    Rabinovitch A, Quigley C, Russel T, et al: Insulin and multiplication stimulating activity (an insulin-like growth factor) stimulate islet β-cell replication in neonatal rat pancreatic monolayer cultures. Diabetes 1982;31:160–164.PubMedCrossRefGoogle Scholar
  33. 33.
    Swenne I, Hill DJ, Strain AJ, Milner RDG: Growth hormone regulation of somatomedin C/insulin-like growth factor I production and DNA replication in fetal rat islets in tissue culture. Diabetes 1987;36:288–294.PubMedCrossRefGoogle Scholar
  34. 34.
    Swenne I, Bone AJ: Effects, in tissue culture, of serum from obese mice on the DNA synthesis of the pancreatic β-cell. Cell Biol Int Rep 1981;5:647–652.PubMedCrossRefGoogle Scholar
  35. 35.
    D’Ercole AJ, Stiles AD, Underwood LE: Tissue concentrations of somatomedin C: Further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci USA 1984;81: 935–939.PubMedCrossRefGoogle Scholar
  36. 36.
    Milner RDG, Hill DJ: Fetal growth control: The role of insulin and related peptides. Clin Endocrinol 1984;21:415–433.CrossRefGoogle Scholar
  37. 37.
    Romanus JA, Rabinovitch A, Rechler MM: Neonatal rat islet cell clusters synthesize insulin-like growth factor I. Diabetes 1985;34:696–702.PubMedCrossRefGoogle Scholar
  38. 38.
    Alumets J, Håkanson R, Sundler F: Ontogeny of endocrine cells in porcine gut and pancreas. An immunocytochemical study. Gastroenterology 1983;85:1359–1372.PubMedGoogle Scholar
  39. 39.
    Sandler S, Andersson A, Schnell A, et al: Tissue culture of human fetal pancreas: Development and function of β-cells in vitro and transplantation of expiant to nude mice. Diabetes 1985;34:1113–1119.PubMedCrossRefGoogle Scholar
  40. 40.
    Stefan Y, Grasso S, Perrelet A, Orci L: Quantitative immunofluorescent study of the endocrine cell population in the developing human pancreas. Diabetes 1983;32:293–301.PubMedCrossRefGoogle Scholar
  41. 41.
    Clark A, Grant AM: Quantitative morphology of endocrine cells in human fetal pancreas. Diabetologia 1983;25:31–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Wirdnam PK, Milner RDG: Quantitation of the β and α cell fractions in human pancreas from early fetal life to puberty. Early Hum Develop 1981;5:299–309.CrossRefGoogle Scholar
  43. 43.
    Rahier J, Wallon J, Henquin JC: Cell populations in the endocrine pancreas of human neonates and infants. Diabetologia 1981;20:540–546.PubMedCrossRefGoogle Scholar
  44. 44.
    Lafferty KJ, Prowse SJ, Agostino M, Simeonovic CJ: Modulation of tissue immunogenicity. Transplant Proc 1983;15:1366–1370.Google Scholar
  45. 45.
    Yasunami Y, Lacy PE, Davie JM, Finke EH: Prolongation of islet xenograft survival (rat to mouse) by in vitro culture at 37°C. Transplantation 1983;35:281–284.PubMedCrossRefGoogle Scholar
  46. 46.
    Parker RC, Healy G, Fisher D: Nutrition of animal cells in tissue culture. VII. Use of replicate cell culture in the evaluation of synthetic media. Canad J Biochem 1954;32:306–311.PubMedCrossRefGoogle Scholar
  47. 47.
    Moore GE, Gerner RE, Franklin HA: Culture of normal human leukocytes. JAMA 1967;199:87–92.Google Scholar
  48. 48.
    Ågren A, Andersson A, Björkén C, et al: Human fetal pancreas. Culture and function in vitro. Diabetes 1980;29(supp 1):64–69.PubMedGoogle Scholar
  49. 49.
    Auerbach R: Morphogenetic interactions in the development of the mouse thymus gland.. Dev Biol 1960;2:271–284.PubMedCrossRefGoogle Scholar
  50. 50.
    Andersson A, Christensen N, Groth C-G, et al: Survival of human fetal pancreatic expiants in organ culture as reflected in insulin secretion and oxygen consumption. Transplantation 1984;37:499–503.PubMedCrossRefGoogle Scholar
  51. 51.
    Hellerström C: Effects of carbohydrates on the oxygen consumption of isolated pancreatic islets of mice. Endocrinology 1967;81:105–112.PubMedCrossRefGoogle Scholar
  52. 52.
    Maitland JE, Parry DG, Turtle JR: Perifusion and culture of human fetal pancreas. Diabetes 1980;29(suppl 1):57–63.PubMedGoogle Scholar
  53. 53.
    Hoffman L, Mandel TE, Carter WM, et al: Insulin secretion by fetal human pancreas in organ culture. Diabetologia 1982;23:426–430.PubMedCrossRefGoogle Scholar
  54. 54.
    Maitland JE, Caterson ID, Gauci RE, et al: Organ culture of human foetal pancreas: Conditions which affect basal and stimulated insulin release. Acta Endocrinol 1985;108:377–385.PubMedGoogle Scholar
  55. 55.
    Mandel TE, Koulmanda M: Effect of culture conditions on fetal mouse pancreas in vitro and after transplantation in syngeneic and allogeneic recipients. Diabetes 34:1082–1087.Google Scholar
  56. 56.
    Tuch BE, Grigoriou S, Turtle JR: Growth and hormonal content of human fetal pancreas passaged in athymic mice. Diabetes 1986;35:464–469.PubMedCrossRefGoogle Scholar
  57. 57.
    Tuch BE, Ng ABP, Jones A, Turtle JR: Histologic differentiation of human fetal pancreatic explants transplantated into nude mice. Diabetes 1984;33:1180–1187.PubMedCrossRefGoogle Scholar
  58. 58.
    Tuch BE, Jones A, Turtle JR: Maturation of the response of human fetal pancreatic expiants to glucose. Diabetologia 28:28–31.Google Scholar
  59. 59.
    Mellgren A, Schnell Landström AH, Petersson B, Andersson A: The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells than the liver or spleen. Diabetologia 1986;29:670–672.PubMedCrossRefGoogle Scholar
  60. 60.
    Hullett DA, Falany JL, Love RB et al: Human fetal pancreas—A potential source for transplantation. Transplantation 1987;43:18–22.PubMedCrossRefGoogle Scholar
  61. 61.
    Sandler S, Andersson A, Schnell Landström A, et al: Tissue culture of human fetal pancreas: Effects of human serum on the development and endocrine function of islet-like cell clusters. Diabetes, in press.Google Scholar
  62. 62.
    Andersson A, Sandler S, Hellerström C, et al: Effects of amniotic fluid on the development of human fetal pancreatic β-cells in tissue culture. Transplant Proc 1986;18:57–59.Google Scholar
  63. 63.
    Goldman H, Colle E: Human pancreatic islets in culture: Effects of supplementing the medium with homologous and heterologous serum. Science 1976;192:1014–1016.PubMedCrossRefGoogle Scholar
  64. 64.
    Varndell IM, Tapia FJ, Probert L, et al: Immunogold staining procedure for the localisation of regulatory peptides. Peptides 1982;3:259–272.PubMedCrossRefGoogle Scholar
  65. 65.
    Groth C-G, Andersson A, Björkén C, et al: Transplantation of fetal pancreatic microfragments via the portal vein to a diabetic patient. Diabetes 1980;29(suppl 1) 80–83.PubMedGoogle Scholar
  66. 66.
    Sandler S, Andersson A, Hellerström C, et al: Preservation of morphology, insulin biosynthesis and insulin release of cryopre served human fetal pancreas. Diabetes 1982;31:238–241.PubMedCrossRefGoogle Scholar
  67. 67.
    Sandler S, Andersson A, Swenne I, et al: Structure and function of human fetal pancreas before and after cryopreservation. Cryobiology 1983;20: 230–236.PubMedCrossRefGoogle Scholar
  68. 68.
    Mazur P: Cryobiology: The freezing of biological systems. Science 1979;168:939–948.CrossRefGoogle Scholar
  69. 69.
    Mazur P: Freezing of living cells: Mechanisms and implications. Am J Physiol 1984;247:C125–C142.PubMedGoogle Scholar
  70. 70.
    Meryman HT, Williams RJ, Douglas MSTJ: Freezing injury from “solution effects” and its prevention by natural and artificial cryoprotection. Cryobiology 1977;14:287–302.PubMedCrossRefGoogle Scholar
  71. 71.
    Bank HL, Davis RF, Emerson D: Cryogenic preservation of isolated rat islets of Langerhans: Effect of cooling and warming rates. Diabetologia 1979;16: 195–199.PubMedCrossRefGoogle Scholar
  72. 72.
    Bank H, Reichard L: Cryogenic preservation of isolated islets of Langerhans: Two-step cooling. Cryobiology 1981;18:489–496.PubMedCrossRefGoogle Scholar
  73. 73.
    Bretzel RG, Schneider J, Dobroschke J, et al: Islet transplantation in experimental diabetes of the rat. VII. Cryopreservation of rat and human islets. Preliminary results. Horm Metab Res 1980;12:274–275.PubMedCrossRefGoogle Scholar
  74. 74.
    Ferguson J, Allsopp RH, Taylor RMR, Johnston IDA: Isolation and long term preservation of pancreatic islets from mouse, rat and guinea pig. Diabetologia 1976;12:115–121.PubMedCrossRefGoogle Scholar
  75. 75.
    Kojima Y, Nakagawara G, Imabori T, et al: Experimental studies on cryopreservation combined with the cultural process of rat pancreatic islets. Japan J Surg 1982;12:463–467.CrossRefGoogle Scholar
  76. 76.
    McKay DB, Karow AM: A functional analysis on isolated rat islets of Langerhans: Effects of dimethylsulfoxide and low-temperature preservation. Cryobiology 1983;20:41–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Nakagawara G, Kojima Y, Mizukami T, et al: Transplantation of cryo-preserved pancreatic islets into the portal vein. Transplant Proc 1981;13: 1503–1507.PubMedGoogle Scholar
  78. 78.
    Rajotte RV, Eng P, Warnock GL, Kneteman NN: Cryopreservation of insulin-producing tissue in rats and dogs. World J Surg 1984;8:179–186.PubMedCrossRefGoogle Scholar
  79. 79.
    Rajotte RV, Scharp DW, Downing R, et al: Pancreatic islet banking: The transplantation of frozen-thawed rat islets transported between centers. Cryobiology 1981;18:357–369.PubMedCrossRefGoogle Scholar
  80. 80.
    Rajotte RV, Stewart HL, Voss WAG, et al: Viability studies on frozen-thawed rat islets of Langerhans. Cryobiology 1977;14:116–120.PubMedCrossRefGoogle Scholar
  81. 81.
    Rajotte RV, Warnock GL, Bruch LC, Procyshyn AW: Transplantation of cryopreserved and fresh rat islets and canine pancreatic fragments: Comparison of cryopreservation protocols. Cryobiology 1983;20:169–184.PubMedCrossRefGoogle Scholar
  82. 82.
    Taylor MJ, Benton MJ: Interaction of cooling rate and warming rate during cryopreservation of isolated rat islets of Langerhans: Some preliminary observations, abstracted. Cryobiology 1983;20:713.Google Scholar
  83. 83.
    Taylor MJ, Duffy TJ, Davisson PJ, Morgan SRA: Slow cooling of isolated rat islets of Langerhans in the presence of dimethyl sulfoxide or glycerol: Effect upon the dynamic pattern of insulin release. Cryo-Lett 1982;3:148–157.Google Scholar
  84. 84.
    Taylor MJ, Duffy TJ, Hunt CJ, et al: Transplantation and in vitro perfusion of rat islets of Langerhans after slow cooling and warming in the presence of either glycerol or dimethyl sulfoxide. Cryobiology 1983;20:185–204.PubMedCrossRefGoogle Scholar
  85. 85.
    Andersson A, Sandler S: Viability tests of cryopreserved endocrine pancreatic cells. Ciyobiology 1983;20:161–168.CrossRefGoogle Scholar
  86. 86.
    Kojima Y, Sandler S, Andersson A, Nakagawara G: Cryopreservation of cultured mouse pancreatic islets: Effects of different freezing media on islet viability. Low Temp Med 1985;11:47–51.Google Scholar
  87. 87.
    Sandler S, Andersson A: The significance of culture for successful cryopreservation of isolated pancreatic islets of Langerhans. Cryobiology 1984;21:503–510.PubMedCrossRefGoogle Scholar
  88. 88.
    Sandler S, Kojima Y, Andersson A: Cryopreservation of mouse pancreatic islets: Effects of fast cooling on islet β-cell function in vitro and after islet transplantation. Transplantation 1986;42:588–592.PubMedCrossRefGoogle Scholar
  89. 89.
    Sandler S, Nilsson B, Borg LAH, et al: Structure and function of cryopreserved mouse pancreatic islets, in Federlin K, Bretzel RG (eds): Islet Isolation, Culture and Cryopreservation. Thieme, Stuttgart, 1981, pp 138–151.Google Scholar
  90. 90.
    Sandler S, Nilsson B, Petersson B, et al: Functional characteristics of cryopreserved mouse pancreatic islets, in Federlin K, Pfeiffer EF, Raptis S (eds): Islet-Pancreas-Transplantation and Artificial Pancreas. Thieme, Stuttgart. Hormone Metabolism Research Supplement Series, 1982, vol 12, pp 71–74.Google Scholar
  91. 91.
    Sandler S, Nilsson B, Andersson A: Cryopreservation of mouse pancreatic islets: Effects of human serum on islet survival. Upsala J Med Sci 1987;92:177–184.PubMedCrossRefGoogle Scholar
  92. 92.
    Sandler S, Andersson A: Cryopreservation of mouse pancreatic islets: Effects of different glucose concentrations in the post-thaw culture medium on islet recovery. Ciyobiology 1987;24:285–291.CrossRefGoogle Scholar
  93. 93.
    Wise HH, Gordon C, Johnson RWG: Intraportal autotransplantation of cryopreserved porcine islets of Langerhans. Cryobiology 1985;22:359–366.PubMedCrossRefGoogle Scholar
  94. 94.
    Wise MH, Yates A, Gordon C, Johnson RW: Subzero preservation of mechanically prepared porcine islets of Langerhans: Response to a glucose challenge in vitro. Cryobiology 1983;20:211–218.PubMedCrossRefGoogle Scholar
  95. 95.
    Kneteman NN, Rajotte RV, Warnock GL: Long-term normoglycemia in pancreatectomized dogs transplanted with frozen/thawed pancreatic islets. Ciyobiology 1986;23:214–221.CrossRefGoogle Scholar
  96. 96.
    Toledo-Pereyra LH, Gordon DA, MacKenzie GH: Application of cryopreservation techniques to islet cell allotransplantation. Cryobiology 1983;20: 205–210.PubMedCrossRefGoogle Scholar
  97. 97.
    Andersson A: Isolated mouse pancreatic islets in culture: Effects of serum and different culture media on the insulin production of the islets. Diabetologia 1978;14:397–404.PubMedCrossRefGoogle Scholar
  98. 98.
    Sandler S, Andersson A: Short and long-term effects of dimethylsulfoxide on mouse pancreatic islet β-cell function in vitro. Cryobiology 1982; 19:299–305.PubMedCrossRefGoogle Scholar
  99. 99.
    Foreman J, Pegg DE: Cell preservation in a programmed cooling machine: The effect of variations in supercooling. Cryobiology 1979;16:315–321.PubMedCrossRefGoogle Scholar
  100. 100.
    Payne WD, Sutherland DER, Matas AJ, Najarian JS: Cryopreservation of neonatal rat islet tissue. Surg Forum 1980;29:347–349.Google Scholar
  101. 101.
    Weber C, Pi-Sunyer FX, Nilaver G, Reemtsa K: Murine islet cryopreservation and corticosteroids: Functional studies. Cryobiology 1983;20:219–225.PubMedCrossRefGoogle Scholar
  102. 102.
    Mazur P, Kemp JA, Miller RH: Survival of fetal rat pancreas frozen to-78°C and-196°C. Proc Natl Acad Sci USA 1976;73:4105–4109.PubMedCrossRefGoogle Scholar
  103. 103.
    Kemp JA, Mazur P, Mullen Y, et al: Reversal of experimental diabetes by fetal rat pancreas. I. Survival and function of fetal rat pancreas frozen to-196°C. Transplant Proc 1977;9:325–328.PubMedGoogle Scholar
  104. 104.
    Kemp JA, Mullen Y, Weissman H, et al: Reversal of diabetes in rats using fetal pancreas stored at-196°C. Transplant Proc 1978;26:260–264.Google Scholar
  105. 105.
    Rajotte RV, Mazur P: Survival of frozen-thawed fetal rat pancreas as a function of the permeation of dimethylsulfoxide and glycerol, warming rate and fetal age. Cryobiology 1981;18:17–31.PubMedCrossRefGoogle Scholar
  106. 106.
    Mandel TE, Carter WM: Cryopreservation and transplantation of organ-cultured fetal islets. Transplant Proc 1984;16:842–844.Google Scholar
  107. 107.
    Hegre OD, Simeonovic CJ, Lafferty KJ: Syngeneic transplantation of cry-opreserved fetal mouse proislets. Diabetes 1984;33:975–977.PubMedCrossRefGoogle Scholar
  108. 108.
    Meunier JM, Berjon JJ, Chastan P, Gomez H: Homogreffes de pancreas foetal chez l’adulte réalisées après cryoconservation et culture. Proc K Ned Akad Weterschap C 1980;83:81–88.Google Scholar
  109. 109.
    Brown J, Kemp JA, Hurt S, Clark WC: Cryopreservation of human fetal pancreas. Diabetes 1980;29(suppl 1):70–73.PubMedGoogle Scholar
  110. 110.
    Kemp JA, Hurt SN, Brown J, Clark WR: Recovery and function of human fetal pancreas frozen to-196°C. Transplantation 1981;32:10–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Stellan Sandler
  • Arne Andersson
  • Ingemar Swenne
  • Leif Jansson
  • Olle Korsgren
  • Annika Schnell Landström
  • L. A. Håkan Borg
  • Birger Petersson
  • Carl-Gustav Groth
  • Claes Hellerström

There are no affiliations available

Personalised recommendations