Conformational Dynamics in RNA—Protein Interactions: Immobilization of the Functional Domains in tRNAfMet and Methionyl-tRNA Synthetase

  • David C. H. Yang
  • Blair Q. Ferguson

Abstract

RNA—protein interactions have been studied extensively. Conformational changes in both nucleic acids and proteins have been demonstrated and may play critical roles in the recognition processes. Conformational flexibility in proteins and its functional significance in some proteins have been elucidated (1). Relatively little is known about the segmental movement in RNA. Specific interactions of tRNA and cognate synthetases have provided model systems that have contributed to our understanding of the mechanisms in protein—RNA interactions (2). One of the particularly advantageous systems is the interaction of tRNAfMet and methionyl-tRNA synthetase (MetRS), as the crystal structures of both tRNAfMet (3) and an active fragment of MetRS (4) have been determined Although the crystal structure of the tRNA—synthetase complex is yet to be resolved, their interaction has been carefully examined using a variety of approaches including photo-cross-linking (5), chemical modification (6), base substitution (7), fluorescence spectroscopy (8), neutron scattering (9), and affinity chemical modification (10). These studies have provided extensive information on the recognition sites in the tRNA molecule. Furthermore, these studies suggest that conformational changes in interacting tRNA and synthetase are essential in the recognition process. Little is known about the nature of the conformational changes in tRNA and the cognate synthetase upon their association.

Keywords

Entropy Anisotropy Immobilization Tryptophan Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hubber, R. (1979) Trends Biochem. Sci. 4:271–276CrossRefGoogle Scholar
  2. 2.
    Schimmel, P. R., and Soll, D. G. (1979) Annu. Rev. Biochem. 48: 601–648.PubMedCrossRefGoogle Scholar
  3. 3.
    Woo, N. H., Roe, B. A., and Rich, A. (1980) Nature 286: 346–351.PubMedCrossRefGoogle Scholar
  4. 4.
    Risler, J. L., Zelwer, C., and Brunie, S. (1981) Nature 292: 384–386.PubMedCrossRefGoogle Scholar
  5. 5.
    Ackerman, E. J., Joachimiak, A., Klinghofer, V., and Sigler, P. (1985) J. Mol. Biol. 181: 93–102.PubMedCrossRefGoogle Scholar
  6. 6.
    Schulman, L. H., and Pelka, H. (1977) Biochemistry 16: 4256–4265.PubMedCrossRefGoogle Scholar
  7. 7.
    Uemura, H., Imai, M., Ohtsuka, E., Ikahara, M., and Soll, D. (1982) Nucleic Acids Res. 10: 6531–6539.PubMedCrossRefGoogle Scholar
  8. 8.
    Blanquet, S., Iwatsubo, M., and Waller, J. P. (1973) Eur. J. Biochem. 36: 213–226.PubMedCrossRefGoogle Scholar
  9. 9.
    Dessen, P., Fayat, G., Zaccai, G., and Blanquet, S. (1982) J. Mol. Biol. 154: 603–613.PubMedCrossRefGoogle Scholar
  10. 10.
    Hountondji, C., Blanquet, S., and Lederer, F. (1985) Biochemistry 24: 1175 1180.Google Scholar
  11. 11.
    Ferguson, B. Q., and Yang, D. C. H. (1986) Biochemistry 25: 529–539.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferguson, B. Q., and Yang, D. C. H. (1986) Biochemistry 25: 2743–2748.PubMedCrossRefGoogle Scholar
  13. 13.
    Ferguson, B. Q., and Yang, D. C. H. (1986) Biochemistry 25: 6572–6578.PubMedCrossRefGoogle Scholar
  14. 14.
    Stryer, L. (1978) Annu. Rev. Biochem. 47: 819–846.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim, S. H., Suddath, F. L., Quigley, G. J., McPherson, A., Susmann, J. L., Wang, A., Seeman, N. C., and Rich, A. (1974) Science 185: 435–440.PubMedCrossRefGoogle Scholar
  16. 16.
    Robertus, J. D., Ladner, J. E., Finch, J. T., Rhodes, D., Brown, R. S., Clark, B. F. C., and Klug, A. (1974) Nature 250: 546–551.PubMedCrossRefGoogle Scholar
  17. 17.
    Beissner, R. S., Quiocho, F. A., and Rudolph, F. B. (1979) J. Mol. Biol. 134: 851–853.CrossRefGoogle Scholar
  18. 18.
    Cassio, D., and Waller, J. P. (1971) Eur. J. Biochem. 20: 283–300.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • David C. H. Yang
  • Blair Q. Ferguson

There are no affiliations available

Personalised recommendations