Skip to main content

Formation of Active Aspartate Transcarbamoylase from Defective Polypeptide Chains Produced by Site-Directed Mutagenesis

  • Chapter

Abstract

Although the genetics literature is replete with exquisite examples of interallelic complementation (1–3) in bacterial strains containing two different mutant copies of the same gene, there is little precise structural information illustrating how functional enzyme complexes are formed by the noncovalent interaction between defective polypeptide chains. For a protein chemist or an enzymologist, interpretation of the results of complementation experiments in terms of molecular mechanisms requires both the availability of suitable mutants containing known defects as well as knowledge of the tertiary and quaternary structures of the wild-type enzyme. Indeed, as Fincham (1) stated in 1966 in the preface to his book: “The present consensus may be summarized by saying that allelic complementation is basically irrelevant to primary gene action, except insofar as it confuses the investigator, but that it is of considerable importance in providing an insight into the structure and functions of multimeric protein molecules.” Because so much is known about the regulatory enzyme aspartate transcarbamoylase (ATCase, aspartate carbamoyltransferase, carbamoylphosphate: L-aspartate carbamoyltransferase, EC 2.1.3.2) from Escherichia coli, it can serve as a useful model system for mechanistic studies of interallelic complementation. A large variety of complementing mutants are available (4), and the three-dimensional structure of the wild-type enzyme is known from x-ray crystallography (5, 6). It seemed likely therefore that in vivo and in vitro complementation experiments with various mutations in pyrB, which encodes the catalytic chains of ATCase, would provide valuable information about the folding of the chains into domains, help to identify amino acid residues critical for catalysis, and contribute to our understanding of the nature of the active sites in the enzyme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fincham, J. R. S. (1966) Genetic Complementation. Benjamin, New York.

    Google Scholar 

  2. Fincham, J. R. S. (1977) Carlsberg Res. Commun. 42: 421–430.

    Article  Google Scholar 

  3. Zabin, I., and Villarejo, M. R. (1975) Annu. Rev. Biochem. 44: 295–313.

    Article  PubMed  CAS  Google Scholar 

  4. Jenness, D. D., and Schachman, H. K. (1983) J. Biol. Chem. 258: 3266–3279.

    PubMed  CAS  Google Scholar 

  5. Ke, H-M., Honzatko, R. B., and Lipscomb, W. N. (1984) Proc. Natl. Acad. Sci. USA 81: 4037–4040.

    Article  PubMed  CAS  Google Scholar 

  6. Krause, K. L., Volz, K. W., and Lipscomb, W. N. (1985) Proc. Natl. Acad. Sci. USA 82: 1643–1647.

    Article  PubMed  CAS  Google Scholar 

  7. Schachman, H. K., Pauza, C. D., Navre, M., Karels, M. J., Wu, L., and Yang, Y. R. (1984) Proc. Natl. Acad. Sci. USA 81: 115–119.

    Article  PubMed  CAS  Google Scholar 

  8. Robey, E. A., and Schachman, H. K. (1985) Proc. Natl. Acad. Sci. USA 82: 361–365.

    Article  PubMed  CAS  Google Scholar 

  9. Monaco, H. L., Crawford, J. L., and Lipscomb, W. N. (1978) Proc. Natl. Acad. Sci. USA 75: 5276–5280.

    Article  PubMed  CAS  Google Scholar 

  10. Honzatko, R. B., Crawford, J. L., Monaco, H. L., Ladner, J. E., Edwards, B. F. P., Evans, D. R., Warren, S. G., Wiley, D. C., Ladner, R. C., and Lipscomb, W. N. (1982) J. Mol. Biol. 160: 219–263.

    Article  PubMed  CAS  Google Scholar 

  11. Jenness, D. D., and Schachman, H. K. (1980) J. Bacteriol. 141: 33–40.

    PubMed  CAS  Google Scholar 

  12. Robey, E. A., Wente, S. R., Markby, D., Flint, A., Yang, Y. R., and Schachman, H. K. (1986) Proc. Natl. Acad. Sci. USA 83: 5934–5938.

    Article  PubMed  CAS  Google Scholar 

  13. Wall, K. A., Flatgaard, J. E., Gibbons, I., and Schachman, H. K. (1979) J. Biol. Chem. 254: 11910–11916.

    PubMed  CAS  Google Scholar 

  14. Wall, K. A., and Schachman, H. K. (1979) J. Biol. Chem. 254: 11917–11926.

    PubMed  CAS  Google Scholar 

  15. Gibbons, I., and Schachman, H. K. (1976) Biochemistry 15: 52–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Yang, Y.R., Wente, S.R., Schachman, H.K. (1988). Formation of Active Aspartate Transcarbamoylase from Defective Polypeptide Chains Produced by Site-Directed Mutagenesis. In: Chock, P.B., Huang, C.Y., Tsou, C.L., Wang, J.H. (eds) Enzyme Dynamics and Regulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3744-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3744-0_45

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8330-0

  • Online ISBN: 978-1-4612-3744-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics