Cu,Zn Superoxide Dismutase: A Case of Metalloenzyme Catalysis in Which the Protein Moiety Plays a Major Role

  • Adelio Rigo
  • Lilia Calabrese
  • Giuseppe Rotilio


The structure and catalytic mechanism of Cu,Zn superoxide dismutase (SOD) are known from studies of the bovine enzyme (for review see refs. 1, 2). This enzyme consists of two identical subunits of 16 kD, each containing a cataly­tically active copper ion and a zinc ion, which shares a common ligand—the imidazole of His 61—with the copper. It has been demonstrated (3, 4) that the enzyme-catalyzed superoxide ion dismutation proceeds by a cyclic oxidation-reduction mechanism involving the copper ion:
$$ ECu\left({II}\right)+O_2^-\xrightarrow{{{k_1}}}ECu\left(I\right)+{O_2} $$
$$ ECu\left(I\right)+O_2^- +2{H^+}\xrightarrow{{{k_2}}}ECu\left({II}\right)+{H_2}{O_2} $$
Our previous pulse-radiolysis work (4) has demonstrated that the reactions between O2 - and either reduced or oxidized forms of the enzyme are diffusion-limited and occur at the same rate of ~ 2 × 109 M -1 s-1 for each Cu site. No rate-limiting first-order process has been observed at the superoxide concen­tration accessible to pulse radiolysis. A Km ≃ 0.4 mM could be measured by a polarographic measurement (5). However, all detailed kinetic studies are performed at [O2 ] « Km because of technical limitations. Under these con­ditions the rate-limiting process is the binding of substrate to the enzyme active site. Previous results showed that the binding rates are independent of pH in the range between 5.0 and 9.5 (6, 7) and are unaffected by D2O (8), indicating that proton transfer is not a part of the binding process. This finding is in line with the identical, diffusion-controlled values of the rate constants measured for the individual redox reactions 1 and 2 (Eqs. 1 and 2). Under saturating conditions, which cannot be explored by current kinetic studies, proton transfer in Eq. 2 could become rate-limiting.


Proton Transfer Titration Curve Catalytic Constant Perchlorate Concentration Detailed Kinetic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rotilio, G., Calabrese, L., and Rigo, A. (1978) In Frontiers in Physicochemical Biology, edited by B. Pullman, pp. 357–368. Academic Press, New York.Google Scholar
  2. 2.
    Fielden, F. M., and Rotilio, G. (1984) In Copper Proteins and Copper Enzymes, Vol. 2, edited by R. Lontie, pp. 27–61. CRC Press, Boca Raton.Google Scholar
  3. 3.
    Klug-Roth, D., Fridovich, I., and Rabani, J. (1973) J. Am. Chem. Soc. 95: 2786 2790.PubMedCrossRefGoogle Scholar
  4. 4.
    Fielden, E. M., Roberts, P. B., Bray, R. C., Lowe, D. J., Mautner, G. N., Rotilio, G., and Calabrese, L. (1974) Biochem. J. 139: 49–60.PubMedGoogle Scholar
  5. 5.
    Rigo, A., Viglino, P., and Rotilio, G. (1975) Biochem. Biophys. Res. Commun. 63: 1013–1013.Google Scholar
  6. 6.
    Rotilio, G., Bray, R. C., and Fielden, F. M. (1972) Biochim. Biophys. Acta 268: 605–609.PubMedGoogle Scholar
  7. 7.
    Klug, D., Rabani, J., and Fridovich, I. (1972) Biochim. Biophys. Acta 268 : 605–609.Google Scholar
  8. 8.
    Hodgson, E. K., and Fridovich, I. (1975) Biochemistry 14: 5294–5299.PubMedCrossRefGoogle Scholar
  9. 9.
    McAdam, M. E., Fielden, F. M., Lavelle, F., Calabrese, L., Cocco, D., and Rotilio, G. (1977) Biochem. J. 167: 271–274.PubMedGoogle Scholar
  10. 10.
    Tainer, J. A., Getzoff, E. D., Richardson, J. S., and Richardson, D. C. (1983) Nature 306: 284–287.PubMedCrossRefGoogle Scholar
  11. 11.
    Koppenol, W. H. (1981) In Oxygen and Oxy-Radicals in Chemistry and Biology, edited by M. A. J. Rodgers and E. L. Powers, pp. 671–674. Academic Press, New York.Google Scholar
  12. 12.
    Marmocchi, F., Mavelli, I., Rigo, A., Stevanato, R., Bossa, F., and Rotilio, G. (1982) Biochemistry 21: 2853–2856.PubMedCrossRefGoogle Scholar
  13. 13.
    Cudd, A., and Fridovich, I. (1982) J. Biol. Chem. 257: 1144–11447.Google Scholar
  14. 14.
    Getzoff, E. D., Tainer, J. A., Weiner, P. K., Kollman, D. A., Richardson, J. S., and Richardson, D. C. (1983) Nature 306: 287–290.PubMedCrossRefGoogle Scholar
  15. 15.
    Mota de Freitas, D., and Valentine, J. S. (1984) Biochemistry 23: 2079–2082.CrossRefGoogle Scholar
  16. 16.
    McCord, J. M., and Fridovich, I. (1969) J. Biol. Chem. 244: 6049–6055.PubMedGoogle Scholar
  17. 17.
    Argese, E., De Carli, B., Orsega, E., Rigo, A., and Rotilio, G. (1983) Anal. Biochem. 132: 110–114.PubMedCrossRefGoogle Scholar
  18. 18.
    Viglino, P., Rigo, A., Argese, F., Calabrese, L., Cocco, D., and Rotilio, G. (1981) Biochim. Biophys. Res. Commun. 100: 125–130.CrossRefGoogle Scholar
  19. 19.
    Rigo, A., Stevanato, P., Viglino, P., and Rotilio, G. (1977) Biochem. Biophys. Res. Commun 79 : 776–783.Google Scholar
  20. 20.
    Calabrese, L., Cocco, D., and Rotilio, G. (1983) In Oxy-Radicals and Their Scavenger Enzymes, edited by G. Cohen, and R. A., Greenwald, pp. 177–186. Elsevier, New York.Google Scholar
  21. 21.
    Alberty, R. A., and Hammes, G. G. (1958) J. Phys. Chem. 62: 154–159.CrossRefGoogle Scholar
  22. 22.
    Argese, E., Viglino, P., Rotilio, G., Scaipa, M., and Rigo, A. (1987) Biochemistry 26: 3224–3228.PubMedCrossRefGoogle Scholar
  23. 23.
    Cocco, D., Rossi, L., Barra, D., Bossa, F., and Rotilio, G. (1982) FEBS Lett. 150: 303–305.PubMedCrossRefGoogle Scholar
  24. 24.
    Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C. (1982) J. Mol. Biol. 160: 181–217.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Adelio Rigo
  • Lilia Calabrese
  • Giuseppe Rotilio

There are no affiliations available

Personalised recommendations