Skip to main content

Hydrodynamic and Acoustic Field Detection

  • Conference paper
Sensory Biology of Aquatic Animals

Abstract

Fishes have an impressive complement of hydrodynamic and acoustic sensors, commonly referred to as the lateral-line and inner-ear sense organs. The basic receptor elements are the hair cells, which detect the minute displacements imparted to their apical ciliary bundles (Fig. 4.1a). The directional sensitivity of the individual receptor cells is indicated by the asymmetric position of the single kinocilium relative to the several rows of stereocilia. Morphologically, the hair cells of the various sensory clusters are strikingly uniform. Their diversity in function is determined mainly by the peripheral structures coupling the ciliary bundles to the physical world that the animals inhabit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexander, R. McN. (1966). Physical aspects of swimbladder function. Biol. Rev., 41:141–176.

    Article  PubMed  CAS  Google Scholar 

  • Banner, A. (1967). Evidence of sensitivity to acoustic displacements in the lemon shark, Negaprion brevirostris (Poey). In: Lateral Line Detectors. Cahn, P.H. (ed.), Indiana University Press, Bloomington, pp. 265–273.

    Google Scholar 

  • Banner, A. (1972). Use of sound in predation by young lemon sharks, Negaprion brevirostris (Poey). Bull. Mar. Sci., 22:251–283.

    Google Scholar 

  • van Bergeijk, W.A. (1964). Directional and nondirectional hearing in fish. In: Marine Bio-Acoustics. Tavolga, W.N. (ed.), Pergamon Press, Oxford, pp. 281–299.

    Google Scholar 

  • van Bergeijk, W.A. (1967a). The evolution of vertebrate hearing. In: Contributions to Sensory Physiology. Neff, W.D. (ed.), Academic Press, New York, pp. 1–49.

    Google Scholar 

  • van Bergeijk, W.A. (1967b). Introductory comments on lateral line function. In: Lateral Line Detectors. Cahn, P.H. (ed.), Indiana University Press, Bloomington, pp. 73–81.

    Google Scholar 

  • van den Berg, A.V. and Schuijf, A. (1983). Discrimination of sounds based on the phase difference between particle motion and acoustic pressure in the shark Chiloscyllium griseum. Proc. R. Soc. Lond., 218:127–134.

    Article  PubMed  Google Scholar 

  • Blaxter, J.H.S., Denton, E.J., and Gray, J.A.B. (1981). Acousticolateralis system in clupeid fishes. In: Hearing and Sound Communication in Fishes. Tavolga, W.N., Popper, A.N., Fay, R.R. (eds.), Springer Verlag, New York, pp. 39–59.

    Google Scholar 

  • Bleckmann, H. (1980). Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J. Comp. Physiol., 140:163–172.

    Article  Google Scholar 

  • Buwalda, R.J.A. (1981). Segregation of directional and nondirectional acoustic information in the cod. In: Hearing and Sound Communication in Fishes. Tavolga, W.N., Popper, A.N., Fay, R.R. (eds.), Springer-Verlag, New York, pp. 139–171.

    Google Scholar 

  • Buwalda, R.J.A., Schuijf, A., and Hawkins, A.D. (1983). Discrimination by the cod of sounds from opposing directions. J. Comp. Physiol., 150:175–184.

    Article  Google Scholar 

  • Cahn, P.H., Siler, W., and Wodinsky, J. (1969). Acoustico-lateralis system of fishes: tests of pressure and particle-velocity sensitivity in grunts, Haemulon sciurus and Haemulon parrai. J. Acoust. Soc. Am., 46:1572–1578.

    Article  PubMed  CAS  Google Scholar 

  • von Campenhausen, C., Riess, I., and Weissert, R. (1981). Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J. Comp. Physiol., 143:369–374.

    Article  Google Scholar 

  • Chapman, C.J. and Hawkins, A.D. (1973). A field study of hearing in the cod, Gadus morhua L. J. Comp. Physiol., 85:147–167.

    Article  Google Scholar 

  • Chapman, C.J. and Sand, O. (1974). Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae). Comp. Biochem. Physiol., 47:371–385.

    Article  CAS  Google Scholar 

  • Corwin, J.T. (1981). Audition in elasmobranchs. In: Hearing and Sound Communication in Fishes. Tavolga, W.N., Popper, A.N., Fay, R.R. (eds.), Springer-Verlag, New York, pp. 81–105.

    Google Scholar 

  • Denton, E.J. and Gray, J. (1983). Mechanical factors in the excitation of clupeid lateral lines. Proc. R. Soc. Lond., 218:1–26.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf, S. (1934). Untersuchungen ueber die Funktion der Seitenorgane an Fischen. Z. Vergl. Physiol., 20:162–214.

    Article  Google Scholar 

  • Dijkgraaf, S. (1960). Hearing in bony fishes. Proc. R. Soc. Lond., 152:51–54.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf, S. (1963a). The functioning and the significance of the lateral-line organs. Biol. Rev., 38:51–105.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf, S. (1963b). Sound reception in the dogfish. Nature, 197:93–94.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, R.C., Bombardieri, R.A., and Meyer, D.L. (1977). The Mauthner-initiated startle response in teleost fish. J. Exp. Biol., 66:65–81.

    PubMed  CAS  Google Scholar 

  • Enger, P.S. (1966). Acoustic threshold in goldfish and its relation to the sound source distance. Comp. Biochem. Physiol., 18:859–868.

    Article  PubMed  CAS  Google Scholar 

  • Enger, P.S. (1967). Effect of the acoustic near field on the sound threshold in fishes. In: Lateral Line Detectors. Cahn, P.H. (ed.), Indiana University Press, Bloomington, pp. 239–248.

    Google Scholar 

  • Enger, P.S. and Andersen, R. (1967). An electrophysiological field study of hearing in fish. Comp. Biochem. Physiol., 22:517–525.

    Article  PubMed  CAS  Google Scholar 

  • Enger, P.S., Hawkins, A.D., Sand, O., and Chapman, C.J. (1973). Directional sensitivity of saccular microphonic potentials in the haddock. J. Exp. Biol., 59:425–433.

    PubMed  CAS  Google Scholar 

  • Fay, R.R. and Popper, A.N. (1974). Acoustic stimulation of the ear of the goldfish (Carassius auratus). J. Exp. Biol., 61:243–260.

    PubMed  CAS  Google Scholar 

  • Fay, R.R. and Popper, A.N. (1975). Modes of stimulation of the teleost ear. J. Exp. Biol., 62:379–387.

    PubMed  CAS  Google Scholar 

  • Fish, M.P. (1964). Biological sources of sustained ambient sea noise. In: Marine Bio-Acoustics. Tavolga, W.N. (ed.), Pergamon Press, Oxford, pp. 175–194.

    Google Scholar 

  • Flock, A. (1965). The ultrastructure of the lateral line canal organ. Acta Oto-Laryngol., Suppl. 199:7–90.

    Google Scholar 

  • von Frisch, K. (1923). Ein Zwergwels, der kommt, wenn man ihm pfeift. Biol. Zbl, 43:439–446.

    Google Scholar 

  • von Frisch, K. (1938). The sense of hearing in fish. Nature, 141:8–11.

    Article  Google Scholar 

  • von Frisch, K. and Dijkgraaf, S. (1935). Koennen Fische die Schallrichtung wahrnehmen? Z. Vergl. Physiol., 22:641–655.

    Google Scholar 

  • Gray, J. (1984). Interaction of sound pressure and particle acceleration in the excitation of the lateral-line neuromasts of sprats. Proc. R. Soc. Lond., 220:299–325.

    Article  Google Scholar 

  • Goerner, P. (1963). Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Z. Vergl. Physiol., 47:316–338.

    Article  Google Scholar 

  • Groen, J.J., Lowenstein, O., and Vendrik, A.J.H. (1952). The mechanical analysis of the responses from the end-organs of the horizontal semicircular canal in the isolated elasmobranch labyrinth. J. Physiol., 117:329–346.

    PubMed  CAS  Google Scholar 

  • Harris, G.G. (1964). Considerations on the physics of sound production by fishes. In: Marine Bio-Acoustics. Tavolga, W.N. (ed.), Pergamon Press, Oxford, pp. 233–247.

    Google Scholar 

  • Harris, G.G. and van Bergeijk, W.A. (1962). Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J. Acoust. Soc. Am., 34:1831–1841.

    Article  Google Scholar 

  • Hawkins, A.D. and Johnstone, A.D.F. (1978). The hearing of the Atlantic salmon, Salmo salar. J. Fish Biol., 13:655–673.

    Article  Google Scholar 

  • Hawkins, A.D. and Myrberg, A.A. (1983). Hearing and sound communication under water. In: Bioacoustics, a Comparative Approach. Lewis, B. (ed.), Academic Press, New York, pp. 347–405.

    Google Scholar 

  • Hudspeth A.J. and Corey, D.P. (1977). Sensitivity, polarity, and conductance change in the response of the vertebrate hair cells to controlled mechanical stimuli. Proc. Natl. Acad. Sci., 74:2407–2411.

    Article  PubMed  CAS  Google Scholar 

  • Jielof, R., Spoor, A., and de Vries, HI. (1952). The microphonic activity of the lateral line. J. Physiol., 116:137–157.

    PubMed  CAS  Google Scholar 

  • Kinsler, L.E., Frey, A.R., Coppens, A.B., and Sanders, J.V. (1982). Fundamentals of Acoustics, John Wiley & Sons, New York.

    Google Scholar 

  • Kroese, A.B.A., van der Zalm, J.M., and van den Bercken, J. (1978). Frequency response of the lateral-line organ of Xenopus laevis. Pfluegers Arch., 375:167–175.

    Article  CAS  Google Scholar 

  • Kroese, A.B.A., van der Zalm, J.M., and van den Bercken, J. (1980). Extracellular receptor potentials from the lateral-line organ of Xenopus laevis. J. Exp. Biol., 86:63–77.

    Google Scholar 

  • Kuiper, J.W. (1967). Frequency characteristics and functional significance of the lateral line organ. In: Lateral Line Detectors. Cahn, P.H. (ed.), Indiana University Press, Bloomington, pp. 105–121.

    Google Scholar 

  • Lamb, H. (1931). The Dynamical Theory of Sound, Edward Arnold and Co, London.

    Google Scholar 

  • Lewis, E.R. (1984). Inertial motion sensors. In: Comparative Physiology of Sensory Systems. Bolis, L., Keynes, R.D., Maddrell, S.H.P. (eds.), Cambridge University Press, Cambridge, pp. 587–610.

    Google Scholar 

  • Lighthill, J. (1980). Waves in Fluids. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lowenstein, O. (1972). Physiology of the vestibular receptors. In: Progress in Brain Research, Vol. 37, Basic Aspects of Central Vestibular Mechanisms. Brodal, A., Pompeiano, O. (eds.), Elsevier, Amsterdam, pp. 19–30.

    Google Scholar 

  • Lowenstein, O. and Roberts, T.D.M. (1951). The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth: a contribution to the problem of the evolution of hearing in vertebrates. J. Physiol., 114:471–489.

    PubMed  CAS  Google Scholar 

  • Mayne, R. (1974). A systems concept of the vestibular organs. In: Handbook of Sensory Physiology, Vol. VI/2. Kornhuber, H.H. (ed.), Springer-Verlag, New York, pp. 493–580.

    Google Scholar 

  • Morse, P.M. and Ingard, K.U. (1968). Theoretical Acoustics: McGraw-Hill, New York.

    Google Scholar 

  • Moulton, J.M. (1960). Swimming sounds and the schooling of fishes. Biol Bull., 119:210–223.

    Article  Google Scholar 

  • Moulton, J.M. (1963). Acoustic behaviour of fishes. In: Acoustic Behaviour of Animals. Busnel, R.G. (ed.), Elsevier, Amsterdam, pp. 655–693.

    Google Scholar 

  • Muenz, H. (1985). Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J. Comp. Physiol., 157:555–568.

    Article  Google Scholar 

  • Myrberg, A. A. (1978). Underwater sound-its effect on the behavior of sharks. In: Sensory Biology of Sharks, Skates, and Rays. Hodgson, E.S., Mathewson, R.F. (eds.), U.S. Government Printing Office, Washington D.C., pp. 391–417.

    Google Scholar 

  • Myrberg, A.A., Banner, A., and Richard, J.D. (1969). Shark attraction using a video-acoustic system. Mar. Biol., 2:264–276.

    Article  Google Scholar 

  • Myrberg, A..A., Gordon, C.R., and Klimley, A.P. (1976). Attraction of free ranging sharks by low frequency sound, with comments on its biological significance. In: Sound Reception in Fish. Schuijf, A., Hawkins, A.D. (eds.), Elsevier, Amsterdam, pp. 205–228.

    Google Scholar 

  • Myrberg, A.A., Ha, S.J., Walewski, S., and Banbury, J.C. (1972). Effectiveness of acoustic signals in attracting epipelagic sharks to an underwater sound source. Bull. Mar. Sci., 22:926–949.

    Google Scholar 

  • Myrberg, A.A. and Spires, J.Y. (1980). Hearing in damselfishes: an analysis of signal detection among closely related species. J. Comp. Physiol., 140:135–144.

    Article  Google Scholar 

  • Nelson, D.R. and Gruber, S.H. (1963). Sharks: attraction by low-frequency sound. Science, 142:975–977.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D.R. and Johnson, R.H. (1972). Acoustic attraction of Pacific Reef sharks: effect of pulse intermittency and variability. Comp. Biochem. Physiol., 42:85–95.

    Article  CAS  Google Scholar 

  • Nelson, D.R. and Johnson, R.H. (1976). Some recent observations on acoustic attraction of Pacific Reef sharks. In: Sound Reception in Fish. Schuijf, A., Hawkins, A.D. (eds.), Elsevier, Amsterdam, pp. 229–239.

    Google Scholar 

  • Olson, K. (1976). Evidence for localization of sound by fish in schools. In: Sound Reception in Fish. Schuijf, A., Hawkins, A.D. (eds.), Elsevier, Amsterdam, pp. 257–270.

    Google Scholar 

  • Partridge, B.L. and Pitcher, T.J. (1980). The sensory basis of fish schools: relative roles of lateral line and vision. J. Comp. Physiol., 135:315–325.

    Article  Google Scholar 

  • Pierce, A.D. (1981). Acoustics, an Introduction to its Physical Principles and Applications. McGraw-Hill, New York.

    Google Scholar 

  • Pumphrey, R.J. (1950). Hearing. Symp. Soc. Exp. Biol., 4:3–18.

    Google Scholar 

  • Richard, J.D. (1968). Fish attraction with pulsed low-frequency sound. J. Fish. Res. Bd. Canada, 25:1441–1452.

    Article  Google Scholar 

  • Roberts, B.L. (1978). Mechanoreception and the behaviour of elasmobranch fishes with special reference to the acoustico-lateralis system. In: Sensory Biology of Sharks, Skates, and Rays. Hodgson, E.S., Mathewson, R.F. (eds.), U.S. Government Printing Office, Washington D.C., pp. 331–390.

    Google Scholar 

  • Sand, O. (1974). Directional sensitivity of microphonic potentials from the perch ear. J. Exp. Biol., 60:881–899.

    PubMed  CAS  Google Scholar 

  • Sand, O. (1981). The lateral line and sound reception. In: Hearing and Sound Communication in Fishes. Tavolga, W.N., Popper, A.N., Fay, R.R. (eds.), Springer-Verlag, New York, pp. 459–480.

    Google Scholar 

  • Sand, O. (1984). Lateral-line systems. In: Comparative Physiology of Sensory Systems. Bolis, L., Keynes, R.D., Maddrell, S.H.P. (eds.), Cambridge University Press, Cambridge, pp. 3–32.

    Google Scholar 

  • Sand, O. and Enger, P.S. (1973). Evidence for an auditory function of the swimbladder in the cod. J. Exp. Biol., 59:405–414.

    PubMed  CAS  Google Scholar 

  • Sand, O. and Enger, P.S. (1974). Possible mechanisms for directional hearing and pitch discrimination in fish. Rheinisch-Westfaelische Akad. Wissensch., 53:223–242.

    Google Scholar 

  • Schlichting, H. (1979). Boundary-Layer Theory. McGraw-Hill, New York.

    Google Scholar 

  • Schuijf, A. (1975). Directional hearing of cod (Gadus morhua) under approximate free field conditions. J. Comp. Physiol., 98:307–332.

    Article  Google Scholar 

  • Schuijf, A. and Buwalda, R.J.A. (1975). On the mechanism of directional hearing in cod (Gadus morhua L.). J. Comp. Physiol., 98:333–343.

    Article  Google Scholar 

  • Schuijf, A. and Buwalda, R.J.A. (1980). Underwater localization-a major problem in fish acoustics. In: Comparative Studies of Hearing in Vertebrates. Popper, A.N., Fay, R.R. (eds.), Springer-Verlag, New York, pp. 43–77.

    Chapter  Google Scholar 

  • Schuijf, A. and Hawkins, A.D. (1983). Acoustic distance discrimination by the cod. Nature, 302:143–144.

    Article  Google Scholar 

  • Schwartz, E. (1965). Bau und Funktion der Seitenlinie des Streifenhechtlings (Aplocheilus lineatus Cuv. u. Val.). Z. Vergl. Physiol., 50:55–87.

    Article  Google Scholar 

  • Siler, W. (1969). Near- and farfields in a marine environment. J. Acoust. Soc. Am., 46:483–484.

    Article  Google Scholar 

  • Steinhausen, W. (1931). Ueber den Nachweis der Bewegung der Cupula in der intakten Bogengangsampulle des Labyrinthes bei der naturlichen rotatorischen und kalorischen Reizung. Pfluegers Arch., 228:322–328.

    Article  Google Scholar 

  • Strelioff, D. and Honrubia, V. (1978). Neural transduction in Xenopus laevis lateral line system. J. Neurophysiol., 41:432–444.

    PubMed  CAS  Google Scholar 

  • Tavolga, W.N. (1964). Sonic characteristics and mechanisms in marine fishes. In: Marine Bio-Acoustics. Tavolga. W.N. (ed.), Pergamon Press, Oxford, pp. 195–211.

    Google Scholar 

  • Tavolga, W.N. (1971). Sound production and detection. In: Fish Physiology, Vol. 5. Hoar, W.S., Randall, D.J. (eds.), Academic Press, New York, pp. 135–205.

    Google Scholar 

  • Tavolga, W.N. and Wodinsky, J. (1963). Auditory capacities in fishes: pure tone thresholds in nine species of marine teleosts. Bull. Am. Mus. Nat. Hist., 126:179–239.

    Google Scholar 

  • Urick, R.J. (1983). Principles of Underwater Sound. McGraw-Hill, New York.

    Google Scholar 

  • de Vries, HI. (1950). The mechanics of the labyrinth otoliths. Acta Oto-Laryngol., 38:262–273.

    Article  Google Scholar 

  • de Vries, HI. (1956). Physical aspects of the sense organs. In: Progress in Biophysics and Biophysical Chemistry. Butler, J.A.V. (ed.), Pergamon Press, Oxford, pp. 208–264.

    Google Scholar 

  • Wenz, G.M. (1964). Curious noises and the sonic environment in the ocean. In: Marine Bio-Acoustics. Tavolga, W.N. (ed.), Pergamon Press, Oxford, pp. 101–119.

    Google Scholar 

  • Wisby, W.J., Richard, J.D., Nelson, D.R., and Gruber, S.H. (1964). Sound perception in elasmobranchs. In: Marine Bio-Acoustics. Tavolga, W.N. (ed.), Pergamon Press, Oxford, pp. 255–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Kalmijn, A.J. (1988). Hydrodynamic and Acoustic Field Detection. In: Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N. (eds) Sensory Biology of Aquatic Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3714-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3714-3_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8317-1

  • Online ISBN: 978-1-4612-3714-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics