Advertisement

Equilibrium in the Vertebrates: Signals, Senses, and Steering Underwater

  • Christopher Platt

Abstract

A freely swimming aquatic vertebrate must orient itself, move, and navigate in the presence of gravitational, buoyant, and hydrodynamic forces. The posture assumed by the animal depends on its responses to these forces and on other sensory inputs, such as the direction of light or the presence of nearby substrate. Together, these various sensory inputs are integrated by the brain to control what is known as “equilibrium” orientation. The sensory inputs have different central importance, or “weighting,” for influencing motor centers and may induce turning movements in different directions. By analogy to a simple physical model of torque forces around a pulley, the equilibrium position results from central balancing of these weighted inputs (von Holst 1950). Such equilibrium is crucial to survival, since rapid striking or escape movements require reproducibility to be successful, and reproducibility depends on starting such a complex movement from a known spatial orientation. Locomotor function must be controlled for rotational components of roll, pitch, and yaw about the longitudinal, transverse, and vertical body axes, respectively, and linear components along the same axes.

Keywords

Hair Cell Semicircular Canal Vestibular Nucleus Vestibular Input Otolith Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allum, G., Graf, W., Dichgans, J., and Schmidt, C. (1976) Visual-vestibular interactions in the vestibular nuclei of the goldfish, Brain Res., 26:463–185.Google Scholar
  2. Annoni, J.M., Cochran, S.L., and Precht, W. (1984) Pharmacology of the vestibular hair cell—afferent fiber synapse in the frog, J. Neurosci., 4:2106–2116.PubMedGoogle Scholar
  3. Barber, V.C., and Emerson, C.J. (1980) Scanning electron microscopic observations on the inner ear of the skate, Raja ocellata, Cell Tissue Res., 205:199–215.Google Scholar
  4. Bogenschütz, H. (1961) Vergleichende Untersuchungen über die optische Gleichge- wichtshaltung bei Fischen, Z. Vgl. Physiol., 44:626–655.CrossRefGoogle Scholar
  5. Braemer, W., and Braemer, H. (1958) Orientation of fish to gravity, Limnol. Oceanogr., 3:362–372.CrossRefGoogle Scholar
  6. Budelli, R., and Macadar, O. (1979) Statoacoustic properties of utricular afferents, J. Neurophysiol., 42:1479–1493.PubMedGoogle Scholar
  7. Budelmann, B.U. (1979) Hair cell polarization in the gravity receptor systems of the statocysts of the cephalopods Sepia officinalis and Loligo vulgaris, Brain Res., 160:261–270.PubMedCrossRefGoogle Scholar
  8. Cohen, B. (ed.) (1981) Vestibular and oculomotor physiology, Ann. N Y. Acad. Sci., 374:1–388.Google Scholar
  9. Corwin, J.T. (1983) Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: continual increases in hair cell number, neural convergence, and physiological sensitivity, J. Comp. Neurol., 217:345–356.PubMedCrossRefGoogle Scholar
  10. Corwin, J.T. (1985) Auditory neurons expand their terminal arbors throughout life and orient toward the site of postembryonic hair cell production in the macula neglecta in elasmobranchs, J. Comp. Neurol., 239:445–452.PubMedCrossRefGoogle Scholar
  11. Denton, E.J., and Gray, J.A.B. (1980) Receptor activity in the utriculus of the sprat, J. Mar. Biol. Assoc. U.K., 60:717–740.CrossRefGoogle Scholar
  12. Dichgans, J., Schmidt, C., and Graf, W. (1973) Visual input improves the speedometer function of the vestibular nuclei in the goldfish, Exp. Brain Res., 18:319–322.PubMedGoogle Scholar
  13. Dieringer, N., and Precht, W. (1979a) Mechanisms of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system, Exp. Brain Res., 36:311–328.PubMedCrossRefGoogle Scholar
  14. Dieringer, N., and Precht, W. (1979b) Mechanisms of compensation for vestibular deficits in the frog. II. Modification of the inhibitory pathways, Exp. Brain Res., 36:311–328.PubMedCrossRefGoogle Scholar
  15. Dunn, R.F., and Koester, D.M. (1984) Primary afferent projections of the octavus nerve to the inferior reticular formation and adjacent nuclei in the elasmobranch, Rhinobatos sp., Brain Res., 323:354–359.PubMedCrossRefGoogle Scholar
  16. Enger, P.S. (1963) Single unit activity in the peripheral auditory system of a teleost fish, Acta Physiol. Scand., 59 (Suppl.) 210:1–48.Google Scholar
  17. Flock, A., and Goldstein, M.H. (1978) Cupular movement and nerve impulse response in the isolated semicircular canal, Brain Res., 157:11–19.PubMedCrossRefGoogle Scholar
  18. Galiana, H.L., Flohr, H., and Melvill Jones, G. (1984) A reevaluation of intervestibular nuclear coupling: its role in vestibular compensation, J. Neurophysiol., 51:242–259.PubMedGoogle Scholar
  19. Goldberg, J.M., and Fernandez, C. (1975) Vestibular mechanisms, Annu. Rev. Physiol., 37:129–162.PubMedCrossRefGoogle Scholar
  20. Graf, W., and Baker, R. (1985a) The vestibuloocular reflex of the adult flatfish. I. Oculomotor organization, J. Neurophysiol., 54:887–899.PubMedGoogle Scholar
  21. Graf, W., Baker, R. (1985b) The vestibuloocular reflex of the adult flatfish. II. Vestibulo- oculomotor connectivity, J. Neurophysiol., 54:900–916.PubMedGoogle Scholar
  22. Graf, W., and Meyer, D.L. (1983) Central mechanisms counteract visually induced tonus asymmetries: a study of ocular responses to unilateral illumination in goldfish, J. Comp. Physiol. A, 150:473–482.CrossRefGoogle Scholar
  23. Henn, V.B., Cohen, B., and Young, L.R. (1980) Visual-vestibular interaction in motion perception and the generation of nystagmus, Neurosci. Res. Prog. Bull., 18:459–651.Google Scholar
  24. Highstein, S.M., and Politoff, A.L. (1978) Relation of interspike baseline activity to the spontaneous discharges of primary afferents from the labyrinth of the toadfish, Opsanus tau, Brain Res., 150:182–187.PubMedCrossRefGoogle Scholar
  25. Hillman, D.E. (1974) Cupular structure and its receptor relationship, Brain Behav. Evol., 10:53–68.CrossRefGoogle Scholar
  26. Hillman, D.E., and McLaren, J.W. (1979) Displacement configuration of semicircular canal cupulae, Neuroscience, 4:1989–2000.PubMedCrossRefGoogle Scholar
  27. Howland, H.C., and Masci, J. (1973) The functional allometry of semicircular canals, fins and body dimensions in the juvenile centrarchid fish, Lepomis gibbosus (L.), J. Embryol. Exp. Morphol., 29:721–743.PubMedGoogle Scholar
  28. Hudspeth, A.J. (1983) Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system, Annu. Rev. Neurosci., 6:187–215.PubMedCrossRefGoogle Scholar
  29. Jones, G.M., and Spells, K.E. (1963) A theoretical and comparative study of the functional dependence of the semicircular canal upon its physical dimensions, Proc. R. Soc. Lond. B Biol. Sci., 157:403–419.PubMedCrossRefGoogle Scholar
  30. Kornhuber, H.H. (ed.) (1974) Vestibular System, Parts 1 and 2, Handbook of Sensory Physiology, vol. 6, Springer-Verlag, Berlin.Google Scholar
  31. Lewis, E.R., Baird, R.A., Leverenz, E.L., and Koyama, H. (1982) Inner ear: dye injection reveals peripheral origins of specific sensitivities, Science, 215:1641–1643.PubMedCrossRefGoogle Scholar
  32. Lewis, E.R., Leverenz, E.L., and Bialek, W. (1985) The vertebrate inner ear, CRC Press, Boca Raton, La.Google Scholar
  33. Lowenstein, O. (1957) The acoustico-lateralis system, in The Physiology of Fishes, vol. 2, Brown, M.E. (ed.), Academic Press, New York, pp. 168–182.Google Scholar
  34. Lowenstein, O. (1971) The labyrinth, in Fish Physiology, vol. 5, Sensory Organs, Hoar, W.S., and Randall, D.J. (eds.), Academic Press, New York, pp. 207–240.Google Scholar
  35. Lowenstein, O. (1974) Comparative morphology and physiology, in Vestibular System: Basic Mechanisms, Handbook of Sensory Physiology, vol. 6, Part I, Kornhuber, H.H. (ed.), Springer-Verlag, Berlin, pp. 75–120.Google Scholar
  36. Lowenstein, O., and Roberts, T.D.M. (1949) The equilibrium function of the otolith organs of the thornback ray (Raja clavata), J. Physiol. (Lond.), 110:392–415.Google Scholar
  37. Macadar, O., Wolfe, G.E., O’Leary, D.P., and Segundo, J.P. (1975) Response of the elasmobranch utricle to maintained spatial orientation, transition, and jitter, Exp. Brain Res., 22:1–12.PubMedCrossRefGoogle Scholar
  38. Marshall, N.B. (1966) The life of fishes, Universe Books, New York.Google Scholar
  39. Mayne, R. (1974) A systems concept of the vestibular organs, in Vestibular System: Psychophysics, Applied Aspects and General Interpretations, Handbook of Sensory Physiology, vol. 6, Part II, Kornhuber, H.H. (ed.), Springer-Verlag, Berlin, pp. 493–580.Google Scholar
  40. McLaren, J.W., and Hillman, D.E. (1979) Displacement of the semicircular canal cupula during sinusoidal rotation, Neuroscience, 4:2001–2008.PubMedCrossRefGoogle Scholar
  41. Melvill Jones, G. (1974) The functional significance of semicircular canal size, in Vestibular System: Basic Mechanisms, Handbook of Sensory Physiology, vol. 6, Part II, Kornhuber, H.H. (ed.), Springer-Verlag, Berlin, pp. 171–184.Google Scholar
  42. Meyer, D.L., Heiligenberg, W., and Bullock, T.H. (1976) The ventral substrate response-a new postural control mechanism in fishes, J. Comp. Physiol. A, 109:59–68.CrossRefGoogle Scholar
  43. Meyer, D.L., Platt, C.J., and Distel, H.J. (1976) Postural control mechanisms in the upside-down catfish (Synodontis nigriventris), J. Comp. Physiol. A, 110:323–331.CrossRefGoogle Scholar
  44. Norman, J.R., and Greenwood, P.H. (1963) A history of fishes, 2d ed., Ernest Benn, London.Google Scholar
  45. O’Leary, D.P., Dunn, R.F., and Honrubia, V. (1976) Analysis of afferent responses from isolated semicircular canal of the guitarfish using white-noise inputs. I. Correlation of response dynamics with receptor innervation, J. Neurophysiol., 39:631–644.PubMedGoogle Scholar
  46. Oman, C.M. (1981) The influence of duct and utricular morphology on semicircular canal response, in The Vestibular System: Function and Morphology, Gualtierotti, T. (ed.), Springer-Verlag, New York, pp. 251–274.Google Scholar
  47. Oman, C.M., Frishkopf, L.S., and Goldstein, M.H. (1979) Cupula motion in the semicircular canal of the skate Raja erinacea, Acta Oto-laryngol., 87:528–538.CrossRefGoogle Scholar
  48. Pfeiffer, W. (1964) Equilibrium orientation in fish, Int. Rev. Gen. Exp. Zool., 1:77–111.Google Scholar
  49. Plassmann, W. (1983) Sensory modality interdependence in the octaval system of an elasmobranch, Exp. Brain Res., 50:283–292.PubMedCrossRefGoogle Scholar
  50. Platt, C. (1973) Central control of postural orientation in flatfish. I. Dependence on central rather than peripheral changes, J. Exp. Biol., 59:491–521.PubMedGoogle Scholar
  51. Platt, C. (1977) Hair cell distribution and orientation in goldfish otolith organs, J. Comp. Neurol., 172:283–298.PubMedCrossRefGoogle Scholar
  52. Platt, C. (1983a) The peripheral vestibular system of fishes, in Fish Neurobiology, vol. 1, Brainstem and Sensory Organs, Northcutt, R.G., and Davis, R.E. (eds.), University of Michigan Press, Ann Arbor, pp. 89–123.Google Scholar
  53. Platt, C. (1983b) Retention of generalized hair cell patterns in the inner ear of the primitive flatfish Psettodes, Anat. Rec., 207:503–508.Google Scholar
  54. Platt, C. (1984) Cellular bases for gravistatic reception by invertebrates and vertebrates, in Comparative Physiology: Sensory Systems, Bolis, L., Keynes, R.D., and Maddrell, S.P. (eds.), Cambridge University Press, Cambridge, U.K., pp. 563–586.Google Scholar
  55. Platt, C., and Popper, A.N. (1981) Fine structure and function of the ear, in Hearing and Sound Communication in Fishes, Tavolga, W.N., Popper, A.N., and Fay, R.R. (eds.), Springer-Verlag, Berlin, pp. 3–38.Google Scholar
  56. Popper, A.N., and Hoxter, B. (1984) Growth of a fish ear. I. Quantitative analysis of hair cell and ganglion cell proliferation, Hear. Res., 15:133–142.PubMedCrossRefGoogle Scholar
  57. Popper, A.N., and Platt, C. (1983) Sensory surface of the saccule and lagena in the ears of ostariophysan fishes, J. Morphol., 176:121–129.CrossRefGoogle Scholar
  58. Popper, A.N., Platt, C., and Saidel, W.M. (1982) Acoustic functions in the fish ear, Trends Neurosci., 5:276–280.CrossRefGoogle Scholar
  59. Popper, A.N., and Tavolga, W.N. (1981) Sound detection and inner ear structure in the marine catfish, Arius felis, J. Comp. Physiol., 144:27–34.CrossRefGoogle Scholar
  60. Precht, W. (1979) Vestibular mechanisms, Annu. Rev. Neurosci., 2:265–289.PubMedCrossRefGoogle Scholar
  61. Ramprashad, F., Landolt, J.P., Money, K.E., and Laufer, J. (1984) Dimensional analysis and dynamic response characterization of mammalian peripheral vestibular structures, Am. J. Anat., 169:295–313.PubMedCrossRefGoogle Scholar
  62. Ramprashad, F., Money, K.E., and Ronald, K. (1972) The harp seal, Pagophilus groenlandicus (Erxleben 1777), XXI. The structure of the vestibular apparatus, Can. J. Zool., 50:1357–1361.PubMedCrossRefGoogle Scholar
  63. Retzius, G. (1881) Das Gehörorgan der Wirbelthiere. I. Das Gehörorgan der Fische und Amphibien, Samson and Wallin, Stockholm.Google Scholar
  64. Retzius, G. (1884) Das Gehörorgan der Wirbelthiere. II. Das Gehörorgan der Reptilien, Vögeln und Säugethieren, Samson and Wallin, Stockholm.Google Scholar
  65. Schellart, N.A.M. (1983) Acousticolateral and visual processing and their interaction in the torus semicircularis of the trout, Salmo gairdneri, Neurosci. Lett., 42:39–44.Google Scholar
  66. Schmidt, C.L., Wist, E.R., and Dichgans, J. (1972) Efferent frequency modulation in the vestibular nerve of goldfish correlated with saccadic eye movements, Exp. Brain Res., 15:1–14.PubMedCrossRefGoogle Scholar
  67. Schoen, L. (1957) Mikroableitungen einzelner zentraler Vestibularisneurone von Knochen- fischen bei Statolithenreizen, Z. Vgl. Physiol., 39:399–417.CrossRefGoogle Scholar
  68. Schoen, L., and von Hoist, E. (1950) Das Zusammenspiel von Lagena und Utriculus bei der Lageorientierung der Knochenfische, Z. Vgl. Physiol., 32:552–571.CrossRefGoogle Scholar
  69. Schöne, H. (1964) Über die Arbeitsweise der Statolithenapparate bei Plattfischen, Biol. Jahresh., 4:135–156.Google Scholar
  70. Schöne, H. (1975) On the transformation of the gravity input into reactions by statolith organs of the “fan” type, Fortschr. Zool., 23:120–127.PubMedGoogle Scholar
  71. Steinhausen, W. (1931) Über den Nachweis der Bewegung der Cupula in der intakten Bogengangsampulle des Labyrinthes bei der natürlichen rotatorischen und calorischen Reizung, Pfluegers. Arch. Gesamte. Physiol. Menschen. Tiere, 228:322–328.CrossRefGoogle Scholar
  72. ten Kate, J.H. (1973) The mechanics of the growing semicircular canal, J. Exp. Biol., 58:351–366.Google Scholar
  73. ten Kate, J.H., van Barneveld, H.H., and Kuiper, J.W. (1970) The dimensions and sensitivities of semicircular canals, J. Exp. Biol., 53:501–514.PubMedGoogle Scholar
  74. Traill, A.B., and Mark, R.F. (1970) Optic and static contributions to ocular counter- rotation in carp, J. Exp. Biol., 52:109–124.Google Scholar
  75. van Egmond, A.A.J., Groen, J.J., and Jongkees, L.B.W. (1949) The mechanics of the semicircular canal, J. Physiol. (Lond.), 110:1–17.Google Scholar
  76. Vilchestroya, J., Dunn, R.F., and O’Leary, D.P. (1984) Relationship of the vestibular hair-cells to magnetic particles in the otolith of the guitarfish sacculus, J. Comp. Neurol., 226:489–494.CrossRefGoogle Scholar
  77. von Baumgarten, R.J., Baldrighi, G., Atema, J., and Shillinger, G.L. (1971) Behavioral responses to linear accelerations in blind goldfish, Space Life Sci., 3:25–33.CrossRefGoogle Scholar
  78. von Hoist, E. (1935) Über den Lichtrückenreflex bei Fischen, Pubbl. Stn. Zool. Napoli, 15:143–158.Google Scholar
  79. von Hoist, E. (1949) Quantitative Untersuchungen über Umstimmungsvorgänge im Zentral- nervensystem. I. Der Einfluss des “Appetits” auf das Gleichgewichtsverhalten bei Pterophyllum, Z. Vgl. Physiol., 31:134–148.Google Scholar
  80. von Hoist, E. (1950) Die Arbeitsweise des Statolithenapparates bei Fischen, Z. Vgl. Physiol., 32:60–120.CrossRefGoogle Scholar
  81. von Hoist, E., and Schoen, L. (1954) Der Einfluss mechanisch veränderter Augenstellungen auf die Richtungslokalization bei Fischen, Z. Vgl. Physiol., 36:433–442.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Christopher Platt
    • 1
  1. 1.Department of AnatomyGeorgetown University Schools of Medicine and DentistryUSA

Personalised recommendations