The Visual System in Teleost Fishes: Morphological Patterns and Trends

  • R. Glenn Northcutt
  • Mario F. Wullimann

Abstract

Information on the organization of the nervous system in vertebrates has increased tremendously during the past twenty years, primarily spurred by new experimental techniques for tracing pathways (Nauta and Ebbesson 1970; Cowan and Cuenod 1975; Heimer and RoBards 1981). One focus of this experimental flurry has been the visual system of teleost fishes (Table 21.1). However, most of these studies have focused on cypriniform teleosts, specifically the common goldfish, Carassius auratus, whose visual system has been adopted as a model in the analysis of general problems of development and plasticity. Alternatively, one or another species has been the focus of an opportunistic analysis, in which some particularly well-developed visual character facilitates recognition of its biological role. Phyletic analyses, representing a third approach, have been infrequent and usually lack rigor. Such analyses should include the following steps: (1) an examination of the characters in a number of taxa; (2) recognition of the patterns of character distribution; (3) determination of the polarity of character transformations (i.e., recognizing homologous characters and determining which are primitive—plesiomorphic—and which are derived—apomorphic); (4) formulation and testing of hypotheses regarding these transformations and their underlying mechanisms. The theory and practice of phylogenetic systematics (Hennig 1966; Eldredge and Cracraft 1980; Wiley 1981; Northcutt 1984a, 1985) appear to provide the most rigorous criteria for such analyses.

Keywords

Migration Cobalt Propen Retina Proline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, J.J., and Hibbard, E. (1974) The optic system of the teleost Cichlasoma biocellatum, J. Comp. Neurol., 158: 145–154.PubMedGoogle Scholar
  2. Bass, A.H. (1981) Organization of the telencephalon in the channel catfish. Ictalurus punctatus. J. Morphol., 169: 71–90.Google Scholar
  3. Braford, M.R., Jr. (1971) Efferent projections of the corpus cerebelli in the goldfish, thesis, Case Western Reserve University, Cleveland.Google Scholar
  4. Braford, M.R., Jr., and Northcutt, R.G. (1983) Organization of the diencephalon and pretectum of the ray-finned fishes, in Fish Neurobiology, vol. 2, Davis, R.E., and Northcutt, R.G. (eds.), University of Michigan Press, Ann Arbor, pp. 117–163.Google Scholar
  5. Brickner, R.M. (1929) A description and interpretation of certain parts of the teleostean midbrain and thalamus, J. Comp. Neurol., 47: 225–282.Google Scholar
  6. Bullock, T.H., and Northcutt, R.G. (1984) Nervus terminalis in dogfish (Squalus acanthias, Elasmobranchii) carries tonic efferent impulses, Neurosci. Lett., 44: 155–160.PubMedGoogle Scholar
  7. Bunt, S.M. (1982) Retinotopic and temporal organization of the optic nerve and tracts in the adult goldfish, J. Comp. Neurol., 206: 209–226.PubMedGoogle Scholar
  8. Butler, A.B., and Northcutt, R.G. (1981) Retinal projections in the green sunfish: a case of homoplasy, Soc. Neurosci. Abstr., 7: 84.Google Scholar
  9. Campbell, C.B.G., and Ebbesson, S.O.E. (1969) The optic system of a teleost: Holocentrus re-examined, Brain Behav. Evol., 2: 415–430.Google Scholar
  10. Cowan, W.M., and Cuenod, M. (1975) The Use of Axonal Transport for Studies of Neuronal Connectivity, Elsevier, Amsterdam.Google Scholar
  11. Crapon de Caprona, M.D., and Fritzsch, B. (1983) The development of the retinopetal nucleus olfacto-retinalis of two cichlid fish as revealed by horseradish peroxidase, Dev. Brain Res., 11: 281–301.Google Scholar
  12. Demski, L.S., and Northcutt, R.G. (1983) The terminal nerve: a new chemosensory system in vertebrates? Science, 220: 435–437.PubMedGoogle Scholar
  13. Easter, S.S., Rusoff, A.C., and Kish, P.E. (1981) The growth and organization of the optic nerve and tract in juvenile and adult goldfish, J. Neurosci., 1: 793–811.PubMedGoogle Scholar
  14. Ebbesson, S.O.E. (1968) Retinal projections in two teleost fishes (Opsanus tau and Gymno- thorax funebris): an experimental study with silver impregnation methods, Brain Behav. Evol., 1: 134–154.Google Scholar
  15. Ebbesson, S.O.E. (1980b) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development and neuronal plasticity, Cell Tissue Res., 213: 179–212.PubMedGoogle Scholar
  16. Ebbesson, S.O.E. (1980a) A visual thalamo-telencephalic pathway in a teleost fish (Holocentrus rufus), Cell Tissue Res., 213: 505–508.PubMedGoogle Scholar
  17. Ebbesson, S.O.E., and Ito, H. (1980) Bilateral retinal projections in the black piranha (Serrasalmus niger), Cell Tissue Res., 213: 483–495.PubMedGoogle Scholar
  18. Ebbesson, S.O.E., and Meyer, D.L. (1981) Efferents to the retina have multiple sources in teleost fish, Science, 214: 924–926.PubMedGoogle Scholar
  19. Ebbesson, S.O.E., and O’Donnel, D. (1980) Retinal projections in the electric catfish (Malapterurus electricus), Cell Tissue Res., 213: 497–503.PubMedGoogle Scholar
  20. Ebbesson, S.O.E., and Vanegas, H. (1976) Projections of the optic tectum in two teleost species, J. Comp. Neurol., 165: 161–180.PubMedGoogle Scholar
  21. Echteler, S.M. (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio, J. Comp. Neurol., 230: 536–551.PubMedGoogle Scholar
  22. Echteler, S.M. (1985) Organization of central auditory pathways in a teleost fish, Cyprinus carpio, J. Comp. Physiol. A, 156: 267–280.Google Scholar
  23. Echteler, S.M., and Saidel, W.M. (1981) Forebrain connections in the goldfish support telencephalic homologies with land vertebrates, Science, 212: 683–685.PubMedGoogle Scholar
  24. Ekström, P. (1982) Retinofugal projections in the eel, Anguilla anguilla L. (Teleostei), visualized by the cobalt-filling technique, Cell Tissue Res., 225: 507–524.PubMedGoogle Scholar
  25. Ekström, P. (1984) Central neural connections of the pineal organ and retina in the teleost Gasterosteus aculeatus L., J. Comp. Neurol., 226: 321–335.PubMedGoogle Scholar
  26. Eldredge, N., and Cracraft, J. (1980) Phylogenetic Patterns and the Evolutionary Process, Columbia University Press, New York.Google Scholar
  27. Fernald, R.D. (1980) Optic nerve distention in a cichlid fish, Vision Res., 20: 1015–1019.PubMedGoogle Scholar
  28. Fernald, R.D. (1982) Retinal projections in the African cichlid fish, Haplochromis burtoni, J. Comp. Neurol., 206: 379–389.PubMedGoogle Scholar
  29. Fiebig, E., Ebbesson, S.O.E., and Meyer, D.L. (1983) Afferent connections of the optic tectum in the piranha (Serrasalmus nattereri), Cell Tissue Res., 231: 55–72.PubMedGoogle Scholar
  30. Finck, W. (1984) Zum optischen System von Coris julis (L.) (Labridae, Perciformes), thesis, University of Basel.Google Scholar
  31. Finger, T.E. (1978a) Cerebellar afferents in teleost catfish (Ictaluridae), J. Comp. Neurol., 181: 173–182.PubMedGoogle Scholar
  32. Finger, T.E. (1978b) Gustatory pathways in the bullhead catfish. II. Facial lobe connections, J. Comp. Neurol., 180: 691–706.PubMedGoogle Scholar
  33. Finger, T.E. (1980) Nonolfactory sensory pathway to the telencephalon in a teleost fish, Science, 210: 671–673.PubMedGoogle Scholar
  34. Finger, T.E., and Karten, H.J. (1978) The accessory optic system in teleosts, Brain Res., 153: 144–149.PubMedGoogle Scholar
  35. Fraley, S.M., and Sharma, S.C. (1984) Topography of retinal axons in the diencephalon of goldfish, Cell Tissue Res., 238: 529–538.PubMedGoogle Scholar
  36. Gerwerzhagen, K., Rickmann, M.J., Meyer, D.L., and Ebbesson, S.O.E. (1982) Optic tract cells projecting to the retina in the teleost, Pantodon buchholzi, Cell Tissue Res., 225: 23–28.PubMedGoogle Scholar
  37. Gould, S.J., and Vrba, E.S. (1982) Exaptation-a missing term in the science of form, Paleobiology, 8: 4–15.Google Scholar
  38. Grover, B.G., and Sharma, S.C. (1979a) Tectal projections in the goldfish (Carassius auratus): a degeneration study, J. Comp. Neurol., 184: 435–454.PubMedGoogle Scholar
  39. Grover, B.G., and Sharma, S.C. (1979b) A retino-thalamo-telencephalic system in goldfish, Invest. Ophthalmol. Suppl., 18: 156.Google Scholar
  40. Grover, B.G., and Sharma, S.C. (1981) Organization of extrinsic tectal connections in goldfish (Carassius auratus), J. Comp. Neurol., 196: 471–488.PubMedGoogle Scholar
  41. Gruberg, E.R., and Udin, S.B. (1978) Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipiens, J. Comp. Neurol., 179: 487–500.PubMedGoogle Scholar
  42. Gulley, R.L., Cochran, M., and Ebbesson, S.O.E. (1975) The visual connections of the adult flatfish, Achirus lineatus, J. Comp. Neurol., 162: 309–320.PubMedGoogle Scholar
  43. Heimer, L., and RoBards, M.J. (1981) Neuroanatomical Tract-Tracing Methods, Plenum, New York.Google Scholar
  44. Hennig, W. (1966) Phylogenetic Systematics, translated by Davis, D.D., and Zangerl, R., University of Illinois Press, Urbana.Google Scholar
  45. Ito, H., and Kishida, R. (1975) Organization of the teleostean nucleus rotundus, J. Morphol., 147: 89–108.PubMedGoogle Scholar
  46. Ito, H., and Kishida, R. (1977) Synaptic organization of the nucleus rotundus in some teleosts, J. Morphol., 151: 397–418.PubMedGoogle Scholar
  47. Ito, H., and Kishida, R. (1978) Telencephalic afferent neurons identified by the retrograde HRP method in the carp diencephalon, Brain Res., 149: 211–215.PubMedGoogle Scholar
  48. Ito, H., Morita, Y., Sakamoto, N., and Ueda, S. (1980) Possibility of telencephalic visual projection in teleosts, Holocentridae, Brain Res., 197: 219–222.PubMedGoogle Scholar
  49. Ito, H., and Murakami, T. (1984) Retinal ganglion cells in two teleost species, Sebastiscus marmoratus and Navodon modestus, J. Comp. Neurol., 229: 80–96.PubMedGoogle Scholar
  50. Ito, H., Sakamoto, N., and Takatsuji, K. (1982) Cytoarchitecture, fiber connections and ultrastructure of nucleus isthmi in a teleost (Navodon modestus) with special reference to degenerating isthmic afferents from optic tectum and nucleus pretectalis, J. Comp. Neurol., 205: 299–311.PubMedGoogle Scholar
  51. Ito, H., Tanaka, H., Sakamoto, N., and Morita, Y. (1981) Isthmic afferent neurons identified by the retrograde HRP method in a teleost, Navodon modestus, Brain Res., 207: 163–169.PubMedGoogle Scholar
  52. Ito, H., and Vanegas, H. (1983) Cytoarchitecture and ultrastructure of nucleus prethalamicus, with special reference to degenerating afferents from optic tectum and telencephalon, in a teleost (Holocentrus ascensionis), J. Comp. Neurol., 221: 401–415.PubMedGoogle Scholar
  53. Ito, H., and Vanegas, H. (1984) Visual receptive thalamopetal neurons in the optic tectum of teleosts (Holocentridae), Brain Res., 290: 201–210.PubMedGoogle Scholar
  54. Ito, H., Vanegas, H., Murakami, T., and Morita, Y. (1984) Diameters and terminal patterns of retinofugal axons in their target areas: an HRP study in two teleosts (Sebastiscus and Navodon), J. Comp. Neurol., 230: 179–197.PubMedGoogle Scholar
  55. Köhler, C., Haglund, L., and Swanson, S.W. (1984) A diffuse AMSH-immunoreactive projection to the hippocampus and spinal cord from individual neurons in the lateral hypothalamic area and zona incerta, J. Comp. Neurol., 223: 501–514.PubMedGoogle Scholar
  56. Landreth, G.E., Neale, E.A., Neale, J.H., Duff, R.S., Braford, M.R., Jr., Northcutt, R.G., and Agranoff, B.W. (1975) Evaluation of [3H]proline for radioautographic tracing of axonal projections in the teleost visual system, Brain Res., 91: 25–42.PubMedGoogle Scholar
  57. Lauder, G.V., and Liem, K.F. (1983a) The evolution and interrelationships of the actinopterygian fishes, Bull. Mus. Comp. Zool., 150: 95–197.Google Scholar
  58. Lauder, G.V., and Liem, K.F. (1983b) Patterns of diversity and evolution in ray-finned fishes, in Fish Neurobiology, vol. 1, Northcutt, R.G., and Davis R.E. (eds.), University of Michigan Press, Ann Arbor, pp. 1–24.Google Scholar
  59. Lázár, G., Libouban, S., and Szabo, T. (1984) The mormyrid mesencephalon. III. Retinal projections in a weakly electric fish, Gnathonemus petersii, J. Comp. Neurol., 230: 1–12.PubMedGoogle Scholar
  60. Lemire, M., and Repérant, J. (1976) Analyse radio-autographique des projections visuelles primaires chez la truite, Salmo irideus Gibb (comparaison avec quelques Téléostéens d’eau douce), C.R. Acad. Sci. Paris, 283 (Sér. D): 951–954.Google Scholar
  61. Locy, W.A. (1899) New facts regarding the development of the olfactory nerve, Anat. Anz., 16: 273–290.Google Scholar
  62. Locy, W.A. (1903) A new cranial nerve in selachians, in Mark Anniversary Volume, Parker, G.H. (ed), Henry Holt, New York, pp. 39–55.Google Scholar
  63. Luiten, P.G.M. (1981) Afferent and efferent connections of the optic tectum in the carp (Cyprinus carpio L.), Brain Res., 220: 51–65.PubMedGoogle Scholar
  64. Mazzi, V. (1953) II corpo glomerulare del talamo degli attinotterigi, Publ. Stn. Zool. Napoli, 24: 373–433.Google Scholar
  65. Meader, R.G. (1934) The optic system of the teleost, Holocentrus. I. The primary optic pathways and the corpus geniculatum complex, J. Comp. Neurol., 60: 361–407.Google Scholar
  66. Meek, J. (1983) Functional anatomy of the tectum mesencephali of the goldfish, Brain Res. Rev., 6: 247–297.Google Scholar
  67. Meyer, D.L., and Ebbesson, S.O.E. (1981) Retinofugal and retinopetal connections in the upside-down catfish (Synodontis nigriventris), Cell Tissue Res., 218: 389–401.PubMedGoogle Scholar
  68. Meyer, D.L., Fiebig, E., and Ebbesson, S.O.E. (1981) A note on the reciprocal connections between the retina and the brain in the puffer fish Tetraodonfluviatilis, Neurosci. Lett., 23: 111–115.PubMedGoogle Scholar
  69. Meyer, D.L., Gerwerzhagen, K., Fiebig, E., Ahlswede, F., and Ebbesson, S.O.E. (1983) An isthmo-optic system in a bony fish, Cell Tissue Res., 231: 129–133.PubMedGoogle Scholar
  70. Morita, Y., Ito, H., and Masai, H. (1980) Central gustatory paths in the crucian carp Carassius carassius, J. Comp. Neurol., 191: 119–132.PubMedGoogle Scholar
  71. Münz, H., and Claas, B. (1981) Centrifugal innervation of the retina in cichlid and poecilid fishes: a horseradish peroxidase study. Neurosci Lett 22: 223–226.Google Scholar
  72. Münz H., Claas B., Stumpf W.E., Jennes L. (1982) Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes, Cell Tissue Res., 222: 313–323.PubMedGoogle Scholar
  73. Münz H., Stumpf W.E., Jennes L. (1981) LHRH systems in the brain of platyfish. Brain Res 22: 1–13.Google Scholar
  74. Murakami, T., Fukuoka, T., and Ito, H. (1986) Telencephalic ascending acousticolateral system in a teleost (Sebastiscus marmoratus), with special reference to the fiber connections of the nucleus preglomerulosus, J. Comp. Neurol., 247: 383–397.PubMedGoogle Scholar
  75. Murakami, T., Morita, Y., and Ito, H. (1983) Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus, J. Comp. Neurol., 216: 115–131.PubMedGoogle Scholar
  76. Nauta, W.J.H., and Ebbesson, S.O.E. (1970) Contemporary Research Methods in Neuroanatomy, Springer-Verlag, New York.Google Scholar
  77. Nieuwenhuys, R. (1963) The comparative anatomy of the actinopterygian forebrain, J. Hirnforsch., 6: 171–192.Google Scholar
  78. Nieuwenhuys, R. (1983) The central nervous system of the brachiopterygian fish Erpetoichthys calabaricus, J. Hirnforsch., 24: 501–533.PubMedGoogle Scholar
  79. Nieuwenhuys, R., and Oey, P.L. (1983) Topological analysis of the brain stem of the reedfish, Erpetoichthys calabaricus, J. Comp. Neurol., 213: 220–232.PubMedGoogle Scholar
  80. Northcutt, R.G. (1981b) Evolution of the telencephalon in nonmammals, Annu. Rev. Neurosci., 4: 301–350.PubMedGoogle Scholar
  81. Northcutt, R.G. (1981a) Localization of neurons afferent to the telencephalon in a primitive bony fish, Polypterus palmas, Neurosci. Lett., 22: 219–222.Google Scholar
  82. Northcutt, R.G. (1982a) Localization of neurons afferent to the optic tectum in longnose gars, J. Comp. Neurol., 204: 325–335.PubMedGoogle Scholar
  83. Northcutt, R.G. (1982b) Cells of origin of pathways afferent to the optic tectum in the green sunfish, Lepomis cyanellus, Invest. Ophthalmol. & Visual Sci. Suppl., 22: 245.Google Scholar
  84. Northcutt, R.G. (1982c) Cerebellar afferents in the longnose gar (Holostei), Soc. Neurosci. Abstr., 8: 762.Google Scholar
  85. Northcutt, R.G. (1983) Evolution of the optic tectum in ray-finned fishes, in: Fish Neurobiology, vol. 2, Davis, R.E., and Northcutt, R.G. (eds.), University of Michigan Press, Ann Arbor, pp. 1–42.Google Scholar
  86. Northcutt, R.G. (1984a) Evolution of the vertebrate central nervous system: patterns and processes, Am. Zool., 24: 701–716.Google Scholar
  87. Northcutt, R.G. (1984b) Anatomical organization of the optic tectum in reptiles, in Comparative Neurology of the Optic Tectum, Vanegas, H. (ed.), Plenum, New York, pp. 547–600.Google Scholar
  88. Northcutt, R.G. (1985) Brain phylogeny: speculations on pattern and cause, in Comparative Neurobiology: Modes of Communication in the Nervous System, Cohen, M.J., and Strumwasser, F. (eds.), Wiley, New York, pp. 351–378.Google Scholar
  89. Northcutt, R.G. (1986) Strategies of comparison: how do we study brain evolution? Verh. Dtsch. Zool. Ges., 79: 91–104.Google Scholar
  90. Northcutt, R.G., and Braford, M.R., Jr. (1980) New observations on the organization and evolution of the telencephalon of actinopterygian fishes, in Comparative Neurology of the Telencephalon, Ebbesson, S.O.E. (ed.), Plenum, New York, pp. 41–98.Google Scholar
  91. Northcutt, R.G., and Braford, M.R., Jr. (1984) Some efferent connections of the superficial pretectum in the goldfish, Brain Res., 296: 181–184.PubMedGoogle Scholar
  92. Northcutt, R.G., and Butler, A.B. (1976) Retinofugal pathways in the longnose gar, Lepisosteus osseus (Linnaeus), J. Comp. Neurol., 166: 1–16.PubMedGoogle Scholar
  93. Northcutt, R.G., and Butler, A.B. (1980) Projections of the optic tectum in the longnose gar, Lepisosteus osseus, Brain Res., 190: 333–346.PubMedGoogle Scholar
  94. Northcutt, R.G., and Davis, R.E. (1983) Telencephalic organization in ray-finned fishes, in Fish Neurobiology, vol. 2, Davis, R.E., and Northcutt, R.G. (eds.), University of Michigan Press, Ann Arbor, pp. 203–236.Google Scholar
  95. Peyrichoux, J., Weidner, C., Repérant, J., and Miceli, D. (1977) An experimental study of the visual system of cyprinid fish using the HRP method, Brain Res., 130: 531–537.PubMedGoogle Scholar
  96. Pinganaud, G., and Clairambault, P. (1975) Sur l’architecture des voies et centres optiques primaires de la truite (Salmo irideus Gibb), C.R. Acad. Sci. Paris, 281 Sér. D: 411–414.Google Scholar
  97. Pinganaud, G., and Clairambault, P. (1979) The visual system of the trout Salmo irideus Gibb: a degeneration and radioautographic study, J. Hirnforsch., 20: 413–431.PubMedGoogle Scholar
  98. Prasada Rao, P.D., and Sharma, S.C. (1982) Retinofugal pathways in juvenile and adult channel catfish, Ictalurus (Ameiurus) punctatus: an HRP and autoradiographic study, J. Comp. Neurol., 210: 37–48.PubMedGoogle Scholar
  99. Presson, J., Fernald, R.D., and Max, M. (1985) The organization of retinal projections to the diencephalon and pretectum in the cichlid fish, Haplochromis burtoni, J. Comp. Neurol., 235: 360–374.PubMedGoogle Scholar
  100. Repérant, J., and Lemire, M. (1976) Retinal projections in cyprinid fishes: a degeneration and radioautographic study, Brain Behav. Evol., 13: 34–57.PubMedGoogle Scholar
  101. Repérant, J., Lemire, M., Miceli, D., and Peyrichoux, J. (1976) A radioautographic study of the visual system in fresh water teleosts following intraocular injection of tritiated fucose and proline, Brain Res., 118: 123–131.PubMedGoogle Scholar
  102. Repérant, J., Rio, J.P., and Amouzou, M. (1979) Analyse radio-autographique des projections rétiniennes chez le poisson osseux/primitif Polypterus senegalus C, C.R. Acad. Sci. Paris, 289 Sér. D: 947–950.Google Scholar
  103. Repérant, J., Rio, J.P., Miceli, D., Amouzou, M., and Peyrichoux, J. (1981) The retinofugal pathways in the primitive African bony fish Polypterus senegalus (Cuvier, 1829), Brain Res., 217: 225–243.PubMedGoogle Scholar
  104. Repérant, J., Vesselkin, N.P., Ermakova, T.V., Rustamov, E.K., Rio, J.P., Palatnikov, G.K., Peyrichoux, J., and Kasimov, R.V. (1982) The retinofugal pathways in a primitive actinopterygian, the chondrostean Acipenser guldenstadti: an experimental study using degeneration, radioautographic and HRP methods, Brain Res., 251: 1–23.PubMedGoogle Scholar
  105. Ricardo, J.A. (1981) Efferent connections of the subthalamic region in the rat. II. The zona incerta, Brain Res., 214: 43–60.PubMedGoogle Scholar
  106. Riley, J.N., and Moore, R. Y. (1981) Diencephalic and brainstem afferents to the hippocampal formation of the rat, Brain Res. Bull., 6: 437–444.PubMedGoogle Scholar
  107. Roth, R.L. (1969) Optic tract projections in representatives of two fresh-water teleost families, Anat. Rec., 163: 253–254.Google Scholar
  108. Rusoff, A.C. (1984) Paths of axons in the visual system of perciform fish and implications of these paths for rules governing axonal growth, J. Neurosci., 4: 1414–1428.PubMedGoogle Scholar
  109. Rusoff, A.C., and Easter, S.S. (1980) Order in the optic nerve of goldfish, Science, 208: 311–312.PubMedGoogle Scholar
  110. Sakamoto, N., and Ito, H. (1982) Fiber connections of the corpus glomerulosum in a teleost, Navodon modestus, J. Comp. Neurol., 205: 291–298.PubMedGoogle Scholar
  111. Sakamoto, N., Ito, H., and Ueda, S. (1981) Topographic projections between the nucleus isthmi and the optic tectum in a teleost, Navodon modestus, Brain Res., 224: 225–234.PubMedGoogle Scholar
  112. Sandemann, D.C., and Rosenthal, N.P. (1974) Efferent axons in the fish optic nerve and their effect on the retinal ganglion cells, Brain Res., 68: 41–54.Google Scholar
  113. Schilling, T.F., and Northcutt, R.G. (1986) A cladistic analysis of the euteleost pretectum, Soc. Neurosci. Abstr., 12: 104.Google Scholar
  114. Schmidt, J.T. (1979) The laminar organization of optic nerve fibres in the tectum of goldfish, Proc. R. Soc. Lond. Biol. Sci., 205: 287–306.Google Scholar
  115. Schnitzlein, H.N. (1962) The habenula and the dorsal thalamus of some teleosts, J. Comp. Neurol., 118: 225–268.PubMedGoogle Scholar
  116. Scholes, J.H. (1979) Nerve fibre topography in the retinal projection to the tectum, Nature, 278: 620–624.PubMedGoogle Scholar
  117. Shammah-Lagnado, S.J., Negrao, N., and Ricardo, J.A. (1985) Afferent connections of the zona incerta: a horseradish peroxidase study in the rat, Neuroscience, 15: 109–134.PubMedGoogle Scholar
  118. Sharma, S.C. (1972) The retinal projections in the goldfish: an experimental study, Brain Res., 39: 213–223.PubMedGoogle Scholar
  119. Sligar, C.M., and Voneida, T.J. (1976) Tectal efferents in the blind cave fish Astyanax hubbsi, J. Comp. Neurol., 165: 107–124.PubMedGoogle Scholar
  120. Smeets, W.J.A.J., Nieuwenhuys, R., and Roberts, B.L. (1983) The central nervous system of cartilaginous fishes, Springer-Verlag, Berlin.Google Scholar
  121. Springer, A.D. (1983) Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis, J. Comp. Neurol., 214: 404–415.Google Scholar
  122. Springer, A.D., and Gaffney, J.S. (1981) Retinal projections in the goldfish: a study using cobaltous-lysine, J. Comp. Neurol., 203: 401–424.PubMedGoogle Scholar
  123. Springer, A.D., and Mednick, A.S. (1985a) Retinofugal and retinopetal projections in the cichlid fish Astronotus ocellatus, J. Comp. Neurol., 236: 179–196.PubMedGoogle Scholar
  124. Springer, A.D., and Mednick, A.S. (1985b) Topography of the retinal projections to the superficial pretectal parvicellular nucleus of goldfish: A cobaltous-lysine study, J. Comp. Neurol., 237:239–250.PubMedGoogle Scholar
  125. Stell, W.K., Chohan, K.S., Lam, D.M.K., and Kozlowski, G.P. (1982) Luteinizing hormone-releasing hormone (LHRH)-immunoreactive fibers in goldfish retina, Invest. Ophthalmol. & Visual Sci., Suppl. 22: 278.Google Scholar
  126. Stell, W.K., Walker, S.E., Kuldip, S., Chohan, K.S., and Ball, A.K. (1984) The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and a molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway, Proc. Nat. Acad. Sci. USA, 81: 940–944.PubMedGoogle Scholar
  127. Striedter, G., and Northcutt, R.G. (1986) Connections of the superficial pretectum and nucleus isthmi in the sunfish Lepomis cyanellus, Soc. Neurosci. Abstr., 12: 103.Google Scholar
  128. Tapp, R.L. (1973) The structure of the optic nerve of the teleost: Eugerres plumieri, J. Comp. Neurol., 150: 239–252.PubMedGoogle Scholar
  129. Tapp, R.L. (1974) Axon numbers and distribution, myelin thickness, and the reconstruction of the compound action potential in the optic nerve of the teleost: Eugerres plumieri, J. Comp. Neurol., 153: 267–274.PubMedGoogle Scholar
  130. Uchiyama, H., and Ito, H. (1984) Fiber connections and synaptic organization of the preoptic retinopetal nucleus in the filefish (Balistidae, Teleostei), Brain Res., 298: 11–24.PubMedGoogle Scholar
  131. Uchiyama, H., Sakamoto, N., and Ito, H. (1981) A retinopetal nucleus in the preoptic area in a teleost, Navodon modestus, Brain Res., 222: 119–124.PubMedGoogle Scholar
  132. Vanegas, H. (1983) Organization and physiology of the teleostean optic tectum, in Fish Neurobiology, vol. 2, Davis, R.E., and Northcutt, R.G. (eds.), University of Michigan Press, Ann Arbor, pp. 43–90.Google Scholar
  133. Vanegas, H., Amat, J., and Essayag-Millan, E. (1973) Electrophysiological evidence of tectal efferents to the fish eye, Brain Res., 54: 309–313.PubMedGoogle Scholar
  134. Vanegas, H., and Ebbesson, S.O.E. (1973) Retinal projections in the perch-like teleost Eugerres plumieri, J. Comp. Neurol., 151: 331–358.PubMedGoogle Scholar
  135. Vanegas, H., and Ebbesson, S.O.E. (1976) Telencephalic projections in two teleost species, J. Comp. Neurol., 165: 181–196.PubMedGoogle Scholar
  136. Vanegas, H., Essayag-Millán, E., and Laufer, M. (1971) Response of the optic tectum to stimulation of the optic nerve in the teleost Eugerres plumieri, Brain Res., 31: 107–118.PubMedGoogle Scholar
  137. Vanegas, H., and Ito, H. (1983) Morphological aspects of the teleostean visual system: a review, Brain Res. Rev., 6: 117–137.Google Scholar
  138. Vesselkin, N.P., Ermakova, T.V., Repérant, J., Kosareva, A.A., and Kenigfest, N.B. (1980) The retinofugal and retinopetal systems in Lampetra fluviatilis: an experimental study using radioautographic and HRP methods, Brain Res., 195: 453–460.PubMedGoogle Scholar
  139. Vesselkin, N.P., Repérant, J., Kenigfest, N.B., Miceli, D., Ermakova, T.V., and Rio, J.P. (1984) an anatomical and electrophysiological study of the centrifugal visual system in the lamprey (Lampetra fluviatilis), Brain Res., 292: 41–56.PubMedGoogle Scholar
  140. Voneida, T.J., and Sligar, C.M. (1976) A comparative neuroanatomic study of retinal projections in two fishes: Astyanax hubbsi (the blind cave fish), and Astyanax mexicanus, J. Comp. Neurol., 165: 89–106.PubMedGoogle Scholar
  141. Wiley, E.O. (1981) Phylogenetics, Wiley, New York.Google Scholar
  142. Wullimann, M.F. (1985) Zum Gehirn von Rhinecanthus aculeatus (Linnaeus, 1758) (Balistidae, Tetraodontiformes, Teleostei), thesis, University of Basel.Google Scholar
  143. Wullimann, M.F. (in press) The hypothalamic, ventricular channel-system and its phylogenetic distribution among fishes, Proc. V Congr. Europ. Ichthyol.Google Scholar
  144. Wullimann, M.F., and Northcutt, R.G. (1985) Cerebellar afferents in the green sunfish, Lepomis cyanellus, Soc. Neurosci. Abstr., 11: 1310.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • R. Glenn Northcutt
    • 1
  • Mario F. Wullimann
    • 1
  1. 1.Neurobiology Unit, Scripps Institute of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations