Abstract
Of all the sense organs, eyes have probably attracted the most attention because of both their central importance and intricate construction. Darwin knew that such “organs of extreme perfection and complication” posed a crucial test of his theory because they seemed too good to have been shaped by natural selection (Darwin [1859] 1958). Since eyes must obey the optical laws of physics, fundamental physical constraints on their structure provide an important analytical basis for understanding adaptive ocular specializations. In light of these physical constraints, inferences about the selective forces that have shaped eye design can be made with some confidence, particularly in the study of aquatic eyes.
To suppose that the eye with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I freely confess, absurd in the highest degree.
(Charles Darwin, The Origin of Species, 1859, p. 168)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ali, M.A. and Wagner, H.H. (1975) Distribution and development of retinomotor responses, in Vision in Fishes, Ali, M.A. (ed.), Plenum, New York, pp. 369–396.
Allen, E.E. and Fernald, R.D. (1981) Scotopic visual threshold in the African cichlid fish, Haplochromis burtoni, Soc. Neuro. 7: 270.
Allen, E.A. and Fernald, R.D. (1985) Spectral sensitivity of the African cichlid fish, Haplochromis burtoni, J. Comp. Physiol. 157: 247–253.
Baburina, E.A. (1955) The eye of the retina in the Caspian shad, Dokl. Akad. Nauk. S.S.S.R., 100(6): 1167–1170.
Bayliss, L.E., Lythgoe, R.J., and Tansley, K. (1936) Some new forms of visual purple found in sea fishes, with a note on the visual cells of origin, Proc. R. Soc. B, 816: 95–113.
Beer, T. (1894) Die Accommodation des Fischauges, Pfluegers Archiv. Gesamte Physiol. Menschen Tiere, 58: 523–650.
Boll, F. (1877) Zur Anatomie und Physiologie der Retina, Arch. Anat. Physiol., 4: 783–787.
Borwein, B. (1981) The retinal receptor: a description, in Vertebrate Photoreceptor Optics, Enoch, J.M. and Tobey, F.L., Jr (eds.), Springer-Verlag, New York, pp. 11–81.
Brewster, D. (1816) On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarised light, Philos. Trans. R. Soc. Lond., 311–317.
Burkhardt, D.A., Gottesman, J., Levine, J.S., and MacNichol, E.F., Jr. (1983) Cellular mechanisms for color-coding in holostean retinas and the evolution of color vision. Vision Res., 23: 1031–1041.
Burnside, B. and Nagle, B. (1983) Retinomotor movements of photoreceptors and retinal pigment epithelium: mechanisms and regulation, in Progress in Retinal Research, vol. 2, Osborne, N. and Chader, G. (eds.), Pergamon Press, New York, p. 67–109.
Campbell, M. and Sands, P.J. (1984) Optical quality during crystalline lens growth, Nature, 312: 291–292.
Charman, W.N. and Tucker, J. (1973) The optical system of the goldfish eye, Vision Res., 13: 1–8.
Clarke, G.L. (1936) On the depth at which fishes can see, Ecology, 17: 452–456.
Cuppy, W. (1941) How to Become Extinct, University of Chicago Press.
Darwin, C. (1859) The Origin of Species, New American Library Edition (1958), p. 187.
Daw, N.W. (1967) Goldfish retina: organization for simultaneous color contrast, Science, 158: 942–944.
Denton, E.J. and Warren, F.J. (1957) The photosensitive pigments in the retinae of deep-sea fish, J. Mar. Biol. Assoc. U.K., 36: 651–652.
Devons, S. (1985) Optics through the eyes of the medieval churchmen, in Science and Technology in Medieval Society, Long, P.O. (ed.), Ann. N.Y. Acad. Sci., pp. 205–224.
Douglas, R.H. (1982) The function of the photomechanical movements in the retina of rainbow trout (Salmo gairdnerii), J. Exp. Biol., 96: 389–403.
Douglas, R.H. and Wagner, H-J. (1984) Action specturm of photomechanical cone contraction in the catfish retina, Invest. Ophthalmol. Visual Sci., 25: 534–538.
Easter, S.S., Johns, P.R., and Baumann, L.R. (1977) Growth of the adult goldfish eye. I Optics, Vision Res., 16: 469–476.
Eberle, H. (1968) Zapfenbau, Zapfenlänge und Chromatische Aberration im Auge von Lebistes reticulatus (Peters Guppy), Zool. Jb. Physiol., 74: 121–154.
Eigenmann, C.H. and Shafer, G.E. (1900) The mosaic of single and twin cones in the retinas of fishes, Am. Nat., 34: 109–118.
Fernald, R.D. (1980) Optic nerve distention in a cichlid fish, Vision Res., 20: 1015–1019.
Fernald, R.D. (1981) Chromatic organization of a cichlid fish retina, Vision Res., 21: 1749–1753.
Fernald, R.D. (1982a) Retinal projections in the African cichlid fish, Haplochromis burtoni, J. Comp. Neurol., 206: 379–389.
Fernald, R.D. (1982b) Cone mosaic in a teleost retina: no difference between light and dark adapted states, Experentia, 38: 1337–1338.
Fernald, R.D. (1983) Neural basis of visual pattern recognition, in Advances in Vertebrate Neuroethology, Ewert, J-P., Capranica, R.R., and Ingle, D.J. (eds.), Plenum, New York, pp. 569–580.
Fernald, R.D. (1984) Vision and behavior in an African cichlid fish, Am. Sci., 72(1): 58–65.
Fernald, R.D. (1985a) Growth of the teleost eye: novel solutions to complex constraints, Environ. Biol. Fishes, 13: 113–123.
Fernald, R.D. (1985b) Eye movements in the African cichlid fish, Haplochromis burtoni, J. Comp. Physiol., 156: 199–208.
Fernald, R.D. and Johns, P.R. (1980) Retinal structure and growth in the cichlid fish, Haplochromis burtoni, Invest. Ophthalmol. Visual Sci. (supp.) 69.
Fernald, R.D. and Liebman, P. (1980) Visual receptor pigments in the African cichlid fish, Haplochromis burtoni, Vision Res., 20: 857–864.
Fernald, R.D. and Scholes, J. (1985a) A zone of exclusive rod neurogenesis in the teleost retina, Soc. Neuro. Abst., 11: 810.
Fernald, R.D. and Scholes, J. (1985b) Retinal neurogenesis in teleosts: a second germinal zone, Submitted.
Fernald, R.D. and Wright, S. (1983) Maintenance of optical quality during crystalline lens growth, Nature, 301: 618–620.
Fernald, R.D. and Wright, S. (1985a) Growth of the visual system of the African cichlid fish, H. burtoni: optics, Vision Res., 25(2): 155–161.
Fernald, R.D. and Wright S. (1985b) Growth of the visual system of the African cichlid fish, H. burtoni: accommodation, Vision Res., 25(2): 163–170.
Fernald, R.D., Wright, S., and Shelton, L.C. (1986) Growth of the visual system of the African cichlid fish, H. burtoni: optic field and retinal field, (in preparation).
Fincham, W.H.A. (1959) Optics, Hatton Press, London.
Fletcher, A., Murphy T., and Young, A. (1954) Solutions of two optical problems, Proc. R. Soc. Lond. A., 223: 216–225.
Fraley, N.B. and Fernald, R.D. (1982) Social control of developmental rate in the African cichlid fish, Haplochromis burtoni, Z. Tierpsychol. 60: 66–82.
Frederikson, R.D. (1973) On the retinal diverticula in the tubular-eyed opisthoproctid deep-sea fishes Macropinna microstoma and Dolichopteryx longipes. Vidensk, Medd. Dan. Naturhist. Foren., 136: 233–244.
Garten, S. (1907) Die Veränderungen der Netzhaut durch Licht, Graefe-Saemisch Handbuch der gesamten Augenheilkunde, Leipzig, pp. 250–280.
Geiger, W. (1956) Quantitative Untersuchungen über das Gehirn der Knochenfische, mit besonderer Berücksichtigung seines relativen Wachstums, Acta Anat. 26: 121–163; 27: 324–350.
Hairston, N.G., Jr. Li, K.T., and Easter, S.S., Jr. (1982) Fish vision and the detection of planktonic prey, Science, 218: 1240–1242.
Herzog, H. (1905) Experimented Untersuchungen zur Physiologie der Bewegungsorgange in der Netzhaut, Arch. Anat. Physiol. (Physiol. Abst.), 516: 413–464.
Hobson, E.S. (1972) Activity of Hawaiian reef fishes during evening and morning transitions between daylight and darkness, U.S. Fish. Bull. 70: 715–740.
Hueter, R.E. and Gruber, S.H. (1980) Retinoscopy of aquatic eyes, Vision Res., 20: 197–200.
Johns, P.R. (1977) Growth of the adult goldfish eye. III. Source of the new retinal retinal cell number, J. Comp. Neurol., 176: 331–342.
Johns, P.R. and Fernald, R.D. (1981) Genesis of rods in teleost fish retina, Nature, 293: 141–142.
Kahmenn, H. (1936) Über das foveale sehen der Wirbeltiere. I. Über die Fovea centralis und die Fovea lateralis bei einigen Wirbeltieren. Albrecht von Graefe’s Arch. Ophthalmol., 135: 265–276.
Kirschfeld, K. (1976) The resolution of lens and compound eyes, in Neural Principles of Vision, Zettler, F. and Weiler, R. (eds.), Springer-Verlag, Berlin, pp. 354–369.
Kong, K.L., Fung, Y.M., and Wasserman, G.S. (1980) Filter mediated color vision with one visual pigment, Science, 207: 783–786.
Kühne, W. (1887) Fortgesetzte Untersuchungen über die Retina und die Pigmente des Auges, Untersuch. Physiol. Inst. Univ. Heildelberg, 2: 89–109.
Kunz, Y. and Ennis, S. (1983) Ultrastructural diurnal changes of the retinal photoreceptors in the embryo of a viviparous teleost (Poecilia reticulata P.), Cell. Differ. 13: 115–123.
Land, M.C. (1981) Optics and vision in invertebrates, in Handbook of Sensory Physiology, vol. VII 6B, Autrum, H.J. (ed.), Springer-Verlag, Berlin, pp. 472–592.
Liebman, P.A. and Entine, G. (1964) Sensitive low-light level microspectrophotometer: detection of photo-sensitive pigments of retinal cones, J. Opt. Soc. Am., 54: 1451–1459.
Liebman, P.A., Carroll, S., and Laties, A. (1969) Spectral sensitivity of retinal screening pigment migration in the frog, Vision Res. 9: 377–384.
Locket, N.A. (1977) Adaptations to the deep-sea environment, in Handbook of Sensory Physiology, vol. VII/5, Crescitelli, F. (ed.), Springer-Verlag, Berlin, pp. 67–192.
Lowe, E.R. and Lythgoe, J.N. (1978) The ecology of cone pigments in teleost fishes, Vision Res., 18: 715–722.
Luneberg, R.K. (1944) Mathematical Theory of Optics, Brown University Press, Providence, R.I., pp. 208–213.
Lyall, A.H., (1957a) The growth of the trout retina, Q. J. Microsc. Sci., 98: 101–110
Lyall A.H. (1957b) Cone arrangements in teleost retinae. Q. J. Microsc. Sci., 98: 189–209.
Lythgoe, J.N. (1979) The Ecology of Vision, Clarendon Press, Oxford.
Marc, R.E. and Sperling, H.G. (1976) Color receptor identities of goldfish cones, Science, 191: 487–489.
Marshall, N.B. (1971) Explorations in the life of fishes, Harvard University Press, Cambridge, Mass.
Matthiessen, L. (1882) Über die Beziehungen, welche zwischen dem Brechungsindex des Kernzentrums der Krystalllinse und den Dimensionen des Auges bestehen, Pflügers Arch ges Physiol, 27: 510–523.
Matthiessen, L. (1886) Über den physikalisch-optischen Bau des Auges der Cetacean und der Fische, Pflügers Archiv. Gesamte Physiol., Menschen Tierre, 38: 521–528.
Maxwell, J.C. (1854) Some solutions of problems, Cambridge & Dublin Math. J., 1: 76–78.
Meyer, D.L. and Schwassmann, H.O. (1970) Electrophysiological method for determination of refractive state in fish eyes, Vision Res., 10: 1301–1303.
Moreland, J.D. and Lythgoe, J.N. (1968) Yellow corneas in fishes, Vision Res., 8: 1377–1380.
Müller, H. (1952) Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus), Zool. Jb. Allgemein Zool. Physiol. Tier, 63: 275–324.
Munk, O. (1966) Ocular anatomy of some deep-sea teleosts, Dana-Rep Carlsberg Found., 70: 1–62.
Munz, F.W. (1958) Photosensitive pigments from the retinae of certain deep sea fishes, J. Physiol., 140: 220–225.
Munz, F.W. and McFarland, W.N. (1977) Evolutionary adaptations of fishes to the photic environment, in Handbook of Sensory Physiology, vol. VII/5, Crescitelli, F. (ed.), Springer-Verlag, Berlin, pp. 193–274.
Nuboer, J.F.W. and van Genderen-Takken, H. (1978) The artifact of retinoscopy, Vision Res., 18: 1091–1096.
Ohtsuka, T. (1985) Relation of spectral types to oil droplets in cones of turtle retina, Science, 229: 874–976.
Orlov, O.Y. and Gamburtzeva, A.G. (1975) Dynamics of corneal colorations in fish, Hexagrammos octagrammus, Biofizika, 21: 362–365.
Otten, E. (1981) Vision during growth of a generalized Haplochromis species: H. Elegans Trewavas 1933 (Pisces, Cichlidae), Neth. J. Zool., 31: 650–700.
Powers, M.K. and Bassi, C.J. (1981) Absolute visual threshold is determined by the proportion of stimulated rods in the growing goldfish retina, Neurosci. Abst., 7: 541.
Powers, M.K. and Easter, S.S., Jr. (1983) Behavioral significance of retinal structure and function in fishes, in Fish Neurobiology, Northcutt, R.G., and Davis, R.E. (eds.), University of Michigan Press, Ann Arbor, pp. 377–404.
Pumphrey, R.J. (1961) Concerning vision, in The Cell and the Organism, Ramsay, J.A. (ed.), Cambridge University Press, pp. 193–208.
Sadler, J.D. (1973) The focal length of the fish eye lens and visual acuity, Vision Res., 13: 417–423.
Scholes, J.H. (1975) Colour receptors and the synaptic connexions in the retina of a cyprinid fish, Philos. Trans. R. Soc. B Lond., 270: 61–118.
Scholes, J.H. (1976) Neuronal connections and cellular arrangement in the fish retina, in Neural Principles of Vision, Zettler, F., and Weiler, R. (eds.), Springer-Verlag, Berlin, pp. 354–369.
Scroczyński, S. (1975a) Die sphärische Aberration der Augenlinse der Regenbogenforelle (Salmo gairdnerii Rich), Zool. Jb. Physiol., 79: 204–212.
Scroczyński, S. (1975b) Die sphärische Aberration der Augenlinse des Hechts (Esox luciusL.), Zool. Jb. Physiol., 79: 547–558.
Scroczyński, S. (1977) Spherical aberration of crystalline lens in the roach Rutilus rutilus L., J. Comp. Physiol., 121: 135–144.
Sivak, J.G (1982) Optical characteristics of the eye of the flounder, J. Comp. Physiol., 146: 345–349.
Sivak, J.G., and Bobier, W.R. (1978) Chromatic aberration of the fish eye and its effect on refractive state, Vision Res., 18: 453–455.
Soemmering, D.W. (1818) De Oculorum Hominis Animaliumque Secone Horizontali Commentatio, Vandenhoeck and Ruprecht, Göttingen.
Stevens, J.K. and Parsons, K.E. (1980) A fish with double vision, Nat. Hist., 89: 62–67.
Tansley, K. (1965) Vision in Vertebrates, Chapman and Hall, London.
Vilter, V. (1953) Existence d’une rétine à plusieur mosaîques photoréceptrice chez un poisson abyssal bathypelagique, Bathylagus benedicei, C. R. Soc. Biol. (Paris), 147: 1937–1939.
Walls, G.L. (1942) The vertebrate eye and its adaptive radiation, Hafner, New York [1962].
Westheimer, G. (1968) “The eye”, in Mountcastle, V.B. (ed.), Medical Physiology, 12th ed., Mosby, St. Louis, pp. 1532–1553.
Young, R.W. (1967) The renewal of photoreceptor outer segments, J. Cell Biol., 33: 61–72.
Young, T. (1801) On the mechanism of the eye, Philos. Trans., 92: 23–88.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1988 Springer-Verlag New York Inc.
About this paper
Cite this paper
Fernald, R.D. (1988). Aquatic Adaptations in Fish Eyes. In: Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N. (eds) Sensory Biology of Aquatic Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3714-3_18
Download citation
DOI: https://doi.org/10.1007/978-1-4612-3714-3_18
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4612-8317-1
Online ISBN: 978-1-4612-3714-3
eBook Packages: Springer Book Archive