Skip to main content

Aquatic Adaptations in Fish Eyes

  • Conference paper
Sensory Biology of Aquatic Animals

Abstract

Of all the sense organs, eyes have probably attracted the most attention because of both their central importance and intricate construction. Darwin knew that such “organs of extreme perfection and complication” posed a crucial test of his theory because they seemed too good to have been shaped by natural selection (Darwin [1859] 1958). Since eyes must obey the optical laws of physics, fundamental physical constraints on their structure provide an important analytical basis for understanding adaptive ocular specializations. In light of these physical constraints, inferences about the selective forces that have shaped eye design can be made with some confidence, particularly in the study of aquatic eyes.

To suppose that the eye with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I freely confess, absurd in the highest degree.

(Charles Darwin, The Origin of Species, 1859, p. 168)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ali, M.A. and Wagner, H.H. (1975) Distribution and development of retinomotor responses, in Vision in Fishes, Ali, M.A. (ed.), Plenum, New York, pp. 369–396.

    Google Scholar 

  • Allen, E.E. and Fernald, R.D. (1981) Scotopic visual threshold in the African cichlid fish, Haplochromis burtoni, Soc. Neuro. 7: 270.

    Google Scholar 

  • Allen, E.A. and Fernald, R.D. (1985) Spectral sensitivity of the African cichlid fish, Haplochromis burtoni, J. Comp. Physiol. 157: 247–253.

    Article  CAS  Google Scholar 

  • Baburina, E.A. (1955) The eye of the retina in the Caspian shad, Dokl. Akad. Nauk. S.S.S.R., 100(6): 1167–1170.

    CAS  Google Scholar 

  • Bayliss, L.E., Lythgoe, R.J., and Tansley, K. (1936) Some new forms of visual purple found in sea fishes, with a note on the visual cells of origin, Proc. R. Soc. B, 816: 95–113.

    Article  Google Scholar 

  • Beer, T. (1894) Die Accommodation des Fischauges, Pfluegers Archiv. Gesamte Physiol. Menschen Tiere, 58: 523–650.

    Article  Google Scholar 

  • Boll, F. (1877) Zur Anatomie und Physiologie der Retina, Arch. Anat. Physiol., 4: 783–787.

    Google Scholar 

  • Borwein, B. (1981) The retinal receptor: a description, in Vertebrate Photoreceptor Optics, Enoch, J.M. and Tobey, F.L., Jr (eds.), Springer-Verlag, New York, pp. 11–81.

    Google Scholar 

  • Brewster, D. (1816) On the structure of the crystalline lens in fishes and quadrupeds, as ascertained by its action on polarised light, Philos. Trans. R. Soc. Lond., 311–317.

    Google Scholar 

  • Burkhardt, D.A., Gottesman, J., Levine, J.S., and MacNichol, E.F., Jr. (1983) Cellular mechanisms for color-coding in holostean retinas and the evolution of color vision. Vision Res., 23: 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  • Burnside, B. and Nagle, B. (1983) Retinomotor movements of photoreceptors and retinal pigment epithelium: mechanisms and regulation, in Progress in Retinal Research, vol. 2, Osborne, N. and Chader, G. (eds.), Pergamon Press, New York, p. 67–109.

    Google Scholar 

  • Campbell, M. and Sands, P.J. (1984) Optical quality during crystalline lens growth, Nature, 312: 291–292.

    Article  PubMed  CAS  Google Scholar 

  • Charman, W.N. and Tucker, J. (1973) The optical system of the goldfish eye, Vision Res., 13: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, G.L. (1936) On the depth at which fishes can see, Ecology, 17: 452–456.

    Article  Google Scholar 

  • Cuppy, W. (1941) How to Become Extinct, University of Chicago Press.

    Google Scholar 

  • Darwin, C. (1859) The Origin of Species, New American Library Edition (1958), p. 187.

    Google Scholar 

  • Daw, N.W. (1967) Goldfish retina: organization for simultaneous color contrast, Science, 158: 942–944.

    Article  PubMed  CAS  Google Scholar 

  • Denton, E.J. and Warren, F.J. (1957) The photosensitive pigments in the retinae of deep-sea fish, J. Mar. Biol. Assoc. U.K., 36: 651–652.

    Article  CAS  Google Scholar 

  • Devons, S. (1985) Optics through the eyes of the medieval churchmen, in Science and Technology in Medieval Society, Long, P.O. (ed.), Ann. N.Y. Acad. Sci., pp. 205–224.

    Google Scholar 

  • Douglas, R.H. (1982) The function of the photomechanical movements in the retina of rainbow trout (Salmo gairdnerii), J. Exp. Biol., 96: 389–403.

    Google Scholar 

  • Douglas, R.H. and Wagner, H-J. (1984) Action specturm of photomechanical cone contraction in the catfish retina, Invest. Ophthalmol. Visual Sci., 25: 534–538.

    CAS  Google Scholar 

  • Easter, S.S., Johns, P.R., and Baumann, L.R. (1977) Growth of the adult goldfish eye. I Optics, Vision Res., 16: 469–476.

    Article  Google Scholar 

  • Eberle, H. (1968) Zapfenbau, Zapfenlänge und Chromatische Aberration im Auge von Lebistes reticulatus (Peters Guppy), Zool. Jb. Physiol., 74: 121–154.

    Google Scholar 

  • Eigenmann, C.H. and Shafer, G.E. (1900) The mosaic of single and twin cones in the retinas of fishes, Am. Nat., 34: 109–118.

    Article  Google Scholar 

  • Fernald, R.D. (1980) Optic nerve distention in a cichlid fish, Vision Res., 20: 1015–1019.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R.D. (1981) Chromatic organization of a cichlid fish retina, Vision Res., 21: 1749–1753.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R.D. (1982a) Retinal projections in the African cichlid fish, Haplochromis burtoni, J. Comp. Neurol., 206: 379–389.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R.D. (1982b) Cone mosaic in a teleost retina: no difference between light and dark adapted states, Experentia, 38: 1337–1338.

    Article  Google Scholar 

  • Fernald, R.D. (1983) Neural basis of visual pattern recognition, in Advances in Vertebrate Neuroethology, Ewert, J-P., Capranica, R.R., and Ingle, D.J. (eds.), Plenum, New York, pp. 569–580.

    Google Scholar 

  • Fernald, R.D. (1984) Vision and behavior in an African cichlid fish, Am. Sci., 72(1): 58–65.

    Google Scholar 

  • Fernald, R.D. (1985a) Growth of the teleost eye: novel solutions to complex constraints, Environ. Biol. Fishes, 13: 113–123.

    Article  Google Scholar 

  • Fernald, R.D. (1985b) Eye movements in the African cichlid fish, Haplochromis burtoni, J. Comp. Physiol., 156: 199–208.

    Article  Google Scholar 

  • Fernald, R.D. and Johns, P.R. (1980) Retinal structure and growth in the cichlid fish, Haplochromis burtoni, Invest. Ophthalmol. Visual Sci. (supp.) 69.

    Google Scholar 

  • Fernald, R.D. and Liebman, P. (1980) Visual receptor pigments in the African cichlid fish, Haplochromis burtoni, Vision Res., 20: 857–864.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R.D. and Scholes, J. (1985a) A zone of exclusive rod neurogenesis in the teleost retina, Soc. Neuro. Abst., 11: 810.

    Google Scholar 

  • Fernald, R.D. and Scholes, J. (1985b) Retinal neurogenesis in teleosts: a second germinal zone, Submitted.

    Google Scholar 

  • Fernald, R.D. and Wright, S. (1983) Maintenance of optical quality during crystalline lens growth, Nature, 301: 618–620.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R.D. and Wright, S. (1985a) Growth of the visual system of the African cichlid fish, H. burtoni: optics, Vision Res., 25(2): 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R.D. and Wright S. (1985b) Growth of the visual system of the African cichlid fish, H. burtoni: accommodation, Vision Res., 25(2): 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R.D., Wright, S., and Shelton, L.C. (1986) Growth of the visual system of the African cichlid fish, H. burtoni: optic field and retinal field, (in preparation).

    Google Scholar 

  • Fincham, W.H.A. (1959) Optics, Hatton Press, London.

    Google Scholar 

  • Fletcher, A., Murphy T., and Young, A. (1954) Solutions of two optical problems, Proc. R. Soc. Lond. A., 223: 216–225.

    Article  Google Scholar 

  • Fraley, N.B. and Fernald, R.D. (1982) Social control of developmental rate in the African cichlid fish, Haplochromis burtoni, Z. Tierpsychol. 60: 66–82.

    Google Scholar 

  • Frederikson, R.D. (1973) On the retinal diverticula in the tubular-eyed opisthoproctid deep-sea fishes Macropinna microstoma and Dolichopteryx longipes. Vidensk, Medd. Dan. Naturhist. Foren., 136: 233–244.

    Google Scholar 

  • Garten, S. (1907) Die Veränderungen der Netzhaut durch Licht, Graefe-Saemisch Handbuch der gesamten Augenheilkunde, Leipzig, pp. 250–280.

    Google Scholar 

  • Geiger, W. (1956) Quantitative Untersuchungen über das Gehirn der Knochenfische, mit besonderer Berücksichtigung seines relativen Wachstums, Acta Anat. 26: 121–163; 27: 324–350.

    Article  PubMed  CAS  Google Scholar 

  • Hairston, N.G., Jr. Li, K.T., and Easter, S.S., Jr. (1982) Fish vision and the detection of planktonic prey, Science, 218: 1240–1242.

    Article  PubMed  Google Scholar 

  • Herzog, H. (1905) Experimented Untersuchungen zur Physiologie der Bewegungsorgange in der Netzhaut, Arch. Anat. Physiol. (Physiol. Abst.), 516: 413–464.

    Google Scholar 

  • Hobson, E.S. (1972) Activity of Hawaiian reef fishes during evening and morning transitions between daylight and darkness, U.S. Fish. Bull. 70: 715–740.

    Google Scholar 

  • Hueter, R.E. and Gruber, S.H. (1980) Retinoscopy of aquatic eyes, Vision Res., 20: 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P.R. (1977) Growth of the adult goldfish eye. III. Source of the new retinal retinal cell number, J. Comp. Neurol., 176: 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P.R. and Fernald, R.D. (1981) Genesis of rods in teleost fish retina, Nature, 293: 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Kahmenn, H. (1936) Über das foveale sehen der Wirbeltiere. I. Über die Fovea centralis und die Fovea lateralis bei einigen Wirbeltieren. Albrecht von Graefe’s Arch. Ophthalmol., 135: 265–276.

    Google Scholar 

  • Kirschfeld, K. (1976) The resolution of lens and compound eyes, in Neural Principles of Vision, Zettler, F. and Weiler, R. (eds.), Springer-Verlag, Berlin, pp. 354–369.

    Chapter  Google Scholar 

  • Kong, K.L., Fung, Y.M., and Wasserman, G.S. (1980) Filter mediated color vision with one visual pigment, Science, 207: 783–786.

    Article  PubMed  CAS  Google Scholar 

  • Kühne, W. (1887) Fortgesetzte Untersuchungen über die Retina und die Pigmente des Auges, Untersuch. Physiol. Inst. Univ. Heildelberg, 2: 89–109.

    Google Scholar 

  • Kunz, Y. and Ennis, S. (1983) Ultrastructural diurnal changes of the retinal photoreceptors in the embryo of a viviparous teleost (Poecilia reticulata P.), Cell. Differ. 13: 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Land, M.C. (1981) Optics and vision in invertebrates, in Handbook of Sensory Physiology, vol. VII 6B, Autrum, H.J. (ed.), Springer-Verlag, Berlin, pp. 472–592.

    Google Scholar 

  • Liebman, P.A. and Entine, G. (1964) Sensitive low-light level microspectrophotometer: detection of photo-sensitive pigments of retinal cones, J. Opt. Soc. Am., 54: 1451–1459.

    Article  PubMed  CAS  Google Scholar 

  • Liebman, P.A., Carroll, S., and Laties, A. (1969) Spectral sensitivity of retinal screening pigment migration in the frog, Vision Res. 9: 377–384.

    Article  PubMed  CAS  Google Scholar 

  • Locket, N.A. (1977) Adaptations to the deep-sea environment, in Handbook of Sensory Physiology, vol. VII/5, Crescitelli, F. (ed.), Springer-Verlag, Berlin, pp. 67–192.

    Google Scholar 

  • Lowe, E.R. and Lythgoe, J.N. (1978) The ecology of cone pigments in teleost fishes, Vision Res., 18: 715–722.

    Article  Google Scholar 

  • Luneberg, R.K. (1944) Mathematical Theory of Optics, Brown University Press, Providence, R.I., pp. 208–213.

    Google Scholar 

  • Lyall, A.H., (1957a) The growth of the trout retina, Q. J. Microsc. Sci., 98: 101–110

    Google Scholar 

  • Lyall A.H. (1957b) Cone arrangements in teleost retinae. Q. J. Microsc. Sci., 98: 189–209.

    Google Scholar 

  • Lythgoe, J.N. (1979) The Ecology of Vision, Clarendon Press, Oxford.

    Google Scholar 

  • Marc, R.E. and Sperling, H.G. (1976) Color receptor identities of goldfish cones, Science, 191: 487–489.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, N.B. (1971) Explorations in the life of fishes, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Matthiessen, L. (1882) Über die Beziehungen, welche zwischen dem Brechungsindex des Kernzentrums der Krystalllinse und den Dimensionen des Auges bestehen, Pflügers Arch ges Physiol, 27: 510–523.

    Article  Google Scholar 

  • Matthiessen, L. (1886) Über den physikalisch-optischen Bau des Auges der Cetacean und der Fische, Pflügers Archiv. Gesamte Physiol., Menschen Tierre, 38: 521–528.

    Article  Google Scholar 

  • Maxwell, J.C. (1854) Some solutions of problems, Cambridge & Dublin Math. J., 1: 76–78.

    Google Scholar 

  • Meyer, D.L. and Schwassmann, H.O. (1970) Electrophysiological method for determination of refractive state in fish eyes, Vision Res., 10: 1301–1303.

    Article  PubMed  CAS  Google Scholar 

  • Moreland, J.D. and Lythgoe, J.N. (1968) Yellow corneas in fishes, Vision Res., 8: 1377–1380.

    Article  PubMed  CAS  Google Scholar 

  • Müller, H. (1952) Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus), Zool. Jb. Allgemein Zool. Physiol. Tier, 63: 275–324.

    Google Scholar 

  • Munk, O. (1966) Ocular anatomy of some deep-sea teleosts, Dana-Rep Carlsberg Found., 70: 1–62.

    Google Scholar 

  • Munz, F.W. (1958) Photosensitive pigments from the retinae of certain deep sea fishes, J. Physiol., 140: 220–225.

    PubMed  CAS  Google Scholar 

  • Munz, F.W. and McFarland, W.N. (1977) Evolutionary adaptations of fishes to the photic environment, in Handbook of Sensory Physiology, vol. VII/5, Crescitelli, F. (ed.), Springer-Verlag, Berlin, pp. 193–274.

    Google Scholar 

  • Nuboer, J.F.W. and van Genderen-Takken, H. (1978) The artifact of retinoscopy, Vision Res., 18: 1091–1096.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka, T. (1985) Relation of spectral types to oil droplets in cones of turtle retina, Science, 229: 874–976.

    Article  PubMed  CAS  Google Scholar 

  • Orlov, O.Y. and Gamburtzeva, A.G. (1975) Dynamics of corneal colorations in fish, Hexagrammos octagrammus, Biofizika, 21: 362–365.

    Google Scholar 

  • Otten, E. (1981) Vision during growth of a generalized Haplochromis species: H. Elegans Trewavas 1933 (Pisces, Cichlidae), Neth. J. Zool., 31: 650–700.

    Article  Google Scholar 

  • Powers, M.K. and Bassi, C.J. (1981) Absolute visual threshold is determined by the proportion of stimulated rods in the growing goldfish retina, Neurosci. Abst., 7: 541.

    Google Scholar 

  • Powers, M.K. and Easter, S.S., Jr. (1983) Behavioral significance of retinal structure and function in fishes, in Fish Neurobiology, Northcutt, R.G., and Davis, R.E. (eds.), University of Michigan Press, Ann Arbor, pp. 377–404.

    Google Scholar 

  • Pumphrey, R.J. (1961) Concerning vision, in The Cell and the Organism, Ramsay, J.A. (ed.), Cambridge University Press, pp. 193–208.

    Google Scholar 

  • Sadler, J.D. (1973) The focal length of the fish eye lens and visual acuity, Vision Res., 13: 417–423.

    Article  PubMed  CAS  Google Scholar 

  • Scholes, J.H. (1975) Colour receptors and the synaptic connexions in the retina of a cyprinid fish, Philos. Trans. R. Soc. B Lond., 270: 61–118.

    Article  CAS  Google Scholar 

  • Scholes, J.H. (1976) Neuronal connections and cellular arrangement in the fish retina, in Neural Principles of Vision, Zettler, F., and Weiler, R. (eds.), Springer-Verlag, Berlin, pp. 354–369.

    Google Scholar 

  • Scroczyński, S. (1975a) Die sphärische Aberration der Augenlinse der Regenbogenforelle (Salmo gairdnerii Rich), Zool. Jb. Physiol., 79: 204–212.

    Google Scholar 

  • Scroczyński, S. (1975b) Die sphärische Aberration der Augenlinse des Hechts (Esox luciusL.), Zool. Jb. Physiol., 79: 547–558.

    Google Scholar 

  • Scroczyński, S. (1977) Spherical aberration of crystalline lens in the roach Rutilus rutilus L., J. Comp. Physiol., 121: 135–144.

    Article  Google Scholar 

  • Sivak, J.G (1982) Optical characteristics of the eye of the flounder, J. Comp. Physiol., 146: 345–349.

    Article  Google Scholar 

  • Sivak, J.G., and Bobier, W.R. (1978) Chromatic aberration of the fish eye and its effect on refractive state, Vision Res., 18: 453–455.

    Article  PubMed  CAS  Google Scholar 

  • Soemmering, D.W. (1818) De Oculorum Hominis Animaliumque Secone Horizontali Commentatio, Vandenhoeck and Ruprecht, Göttingen.

    Google Scholar 

  • Stevens, J.K. and Parsons, K.E. (1980) A fish with double vision, Nat. Hist., 89: 62–67.

    Google Scholar 

  • Tansley, K. (1965) Vision in Vertebrates, Chapman and Hall, London.

    Google Scholar 

  • Vilter, V. (1953) Existence d’une rétine à plusieur mosaîques photoréceptrice chez un poisson abyssal bathypelagique, Bathylagus benedicei, C. R. Soc. Biol. (Paris), 147: 1937–1939.

    CAS  Google Scholar 

  • Walls, G.L. (1942) The vertebrate eye and its adaptive radiation, Hafner, New York [1962].

    Google Scholar 

  • Westheimer, G. (1968) “The eye”, in Mountcastle, V.B. (ed.), Medical Physiology, 12th ed., Mosby, St. Louis, pp. 1532–1553.

    Google Scholar 

  • Young, R.W. (1967) The renewal of photoreceptor outer segments, J. Cell Biol., 33: 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Young, T. (1801) On the mechanism of the eye, Philos. Trans., 92: 23–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Fernald, R.D. (1988). Aquatic Adaptations in Fish Eyes. In: Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N. (eds) Sensory Biology of Aquatic Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3714-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3714-3_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8317-1

  • Online ISBN: 978-1-4612-3714-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics