Skip to main content

Feedback Design from the Zero Dynamics Point of View

  • Chapter
Computation and Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 1))

Abstract

The development of a comprehensive feedback design methodology for nonlinear control systems, similar both in scope and in intuitive appeal to classical automatic control, is a long sought after goal in modern systems and control theory. The classical approaches to the control of finite dimensional linear systems made heavy use, in one or another form, of superposition properties of linear systems. In frequency domain terms, the response to fairly general input signals can be determined in terms of the superposition of the response to input sinusoids of arbitrary frequencies which can be conveniently encoded in terms of a frequency response, or transfer, function. Partial results, using “describing function” methods, similar in spirit to frequency domain methods, have been obtained for certain nonlinear systems; e.g., it is sometimes possible to estimate the frequency of a nonlinear oscillation using describing functions. Nonetheless, straightforward attempts to extend inherently linear properties, such as superposition, apply only in fairly special situations, falling far short of goals such as feedback stabilization, asymptotic tracking or disturbance attenuation for broad classes of nonlinear control systems.

Research supported in part by AFOSR, NSF and Il Ministero della Publica Istruzione

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aeyels, “Stabilization of a Class of Nonlinear Systems by a Smooth Feedback Control”, Systems and Control Letters, v. 5, 1985, pp. 289–294.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. W. Brockett, “Asymptotic Stability and Feedback Stabilizability”, Differential Geometric Control Theory (R. W. Brockett, R. S. Millman, H. J. Sussmann, eds.) Birkhauser, 1983, pp. 181–191.

    Google Scholar 

  3. C. Byrnes and A. Isidori,“A Frequency Domain Philosophy for Nonlinear Systems, with Applications to Stabilization and Adaptive Control”,23rd IEEE Conf. Decision and Control, 1984, pp. 1569–1573.

    Chapter  Google Scholar 

  4. C. I. Byrnes and A. Isidori, “Local Stabilization of Minimum Phase Systems”, Systems and Control Letters, v. 11, 1988.

    Google Scholar 

  5. C. I. Byrnes and A. Isidori, “Analysis and Design of Nonlinear Feedback Systems, I°: Zero Dynamics and Global Normal Forms”, submitted for publication.

    Google Scholar 

  6. C. I. Byrnes and A. Isidori, “Analysis and Design of Nonlinear Feedback Systems, II0: Global Stabilization of Minimum Phase Systems”, submitted for publication.

    Google Scholar 

  7. B. D’ANDREA and L. Praly, “About Finite Nonlinear Zeros for Decouplable Systems”, Systems and Control Letters, v. 10, 1988, pp. 103–108.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.Descusse and C. H. Moog, “Decoupling with Dynamic Compensation for Strong Invertible Affine Nonlinear Systems”, Int. J. of Control, v.42, 1985, pp. 1387–1398.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Fliess, “A Note on the Invertibility of Nonlinear Input-Output Differential Systems”, Systems and Control Letters, v. 8, 1986, pp. 147–151.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Francis, “The Linear Multivariable Regulator Problem”, SIAM J. Control and Optimization, v. 15, 1977, pp. 486–505.

    Article  MathSciNet  Google Scholar 

  11. M. Hautus, “Linear Matrix Equations with Applications to the Regulator Problem”, Outils and Methodes Mathematiques pour l’Auto-matique..., I. D. Landau Ed., v. 3, 1983, pp. 399–412.

    MathSciNet  Google Scholar 

  12. R. M. Hirschorn, “Invertibility of Multivariable Nonlinear Control Systems”, IEEE Trans. Automatic Control, v. AC-24, 1979, pp. 855–865.

    Article  MathSciNet  Google Scholar 

  13. A. Isidori, Nonlinear Control Systems: An Introduction, Springer Verlag, Lecture Notes in Control and Information Sciences, v. 72, 1985.

    Google Scholar 

  14. A. Isidori, 1c;Control of Nonlinear Systems via Dynamic State Feedback,201d; Algebraic and Geometric Methods in Nonlinear Control Theory, M. Hazewinkel (eds.), D. Reidel, 1986, pp. 121-145.

    Google Scholar 

  15. A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, “Nonlinear Decoupling via Feedback: A Differential-Geometric Approach”, IEEE Trans. Automatic Control, v. AC-26, 1981, pp. 331–345.

    Article  MathSciNet  Google Scholar 

  16. A. Isidori and C. Moog, “On the Nonlinear Equivalent to the Notion of Transmission Zeros”, Modeling and Adaptive Control, (C. I. Byrnes and A. H. Kurszanski, eds.), Springer Verlag, Lecture Notes in Control and Information Sciences, v. 105, 1988.

    Google Scholar 

  17. A. Isidori, C. Moog, and A. DeLuca, “A Sufficient Condition for Full Linearizaton via Dynamic State-Feedback”, 25th IEEE Conf. Decision and Control, 1986, pp. 203–208.

    Chapter  Google Scholar 

  18. H. Khalil and A. Saberi, “Adaptive Stabilization of a Class of Nonlinear Systems Using High-Gain Feedback”, IEEE Trans. Automatic Control, v. AC-32 1987, pp. 270–276.

    Google Scholar 

  19. P. Kokotovic, “Applications of Singular Perturbation Techniques to Control Problems”, SIAM Review, 1984, pp. 501–550.

    Google Scholar 

  20. A. J. Krener , “(Adf, g), (adfg) and Locally (ad/g) Invariant and Controllability Distributions”, SIAM J. Control Optim., v. 30, 1985, pp. 566–573.

    Google Scholar 

  21. A. J. Krener, A. Isidori, “Nonlinear Zero Distributions”, 19th IEEE Conf. Decision and Control, 1980.

    Google Scholar 

  22. R. Marino, “Feedback Stabilization of Single Input Nonlinear Systems”, Systems and Control Letters, v. 11, 1988, pp. 201–206.

    Article  Google Scholar 

  23. S. Monaco and D. Normand-Cyrot, “Zero Dynamics of Sampled Nonlinear Systems”, Systems and Control Letters, v.11, 1988.

    Google Scholar 

  24. L. M. Silverman, “Inversion of Multivariable Linear Systems”, IEEE Trans. Automatic Control, v. AC-14, 1969, pp. 270–276.

    Google Scholar 

  25. A. J. van der Schaft, “On Clamped Dynamics of Nonlinear Systems”, Math. Theory of Network and Systems, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Boston

About this chapter

Cite this chapter

Byrnes, C.I., Isidori, A. (1989). Feedback Design from the Zero Dynamics Point of View. In: Computation and Control. Progress in Systems and Control Theory, vol 1. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3704-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3704-4_3

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3438-4

  • Online ISBN: 978-1-4612-3704-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics