The Exact Hausdorff Measure of Brownian Multiple Points, II

  • Jean-François Le Gall
Part of the Progress in Probability book series (PRPR, volume 17)


The purpose of this note is to sharpen a result established in [5] concerning the Hausdorff measure of the set of multiple points of a d-dimensiohal Brownian motion. Let X = (Xt, t ≥ 0) denote a standard two-dimensional Brownian motion and, for every integer k ≥ 1, let Mk, denote the set of k-multiple points of X (a point z is said to be k-multiple if there exist k distinct times \(0 \leqslant t_1 < \ldots < t_k \) such that \(X_{t_1 } = \ldots = X_{t_k } = z \)). A canonical measure on Mk, can be constructed as follows. Set: Open image in new window The intersection local time of X with itself, at the order k, is the Radon measure on J k formally defined by:
$${\alpha _{\text{k}}}({\text{d}}{{\text{t}}_1}...{\text{d}}{{\text{t}}_{\text{k}}}) = {\delta _{(0)}}({{\text{X}}_{{{\text{t}}_1}}} - {{\text{X}}_{{{\text{t}}_2}}})...{\delta _{(0)}}({{\text{X}}_{{{\text{t}}_{{\text{k}} - 1}}}} - {{\text{X}}_{{{\text{t}}_{\text{k}}}}})\;{\text{d}}{{\text{t}}_1}...{\text{d}}{{\text{t}}_{\text{k}}} $$
where δ(0) denotes the Dirac measure at 0 in ℝ2. A precise definition of α k may be found in Rosen [7] or Dynkin [2]. As the previous formal definition suggests, the measure α k is supported on the set \(\left\{ {({{\text{t}}_{{1}}},...,{{\text{t}}_{\text{k}}});{{\text{X}}_{{{{\text{t}}_{{1}}}}}} = ... = {{\text{X}}_{{{{\text{t}}_{\text{k}}}}}}} \right\} \) of k-multiple times. Let ℓk denote the image measure of αk by the mapping \(({{\text{t}}_{{1}}},...,{{\text{t}}_{\text{k}}}) \to {{\text{X}}_{{{{\text{t}}_{{1}}}}}} \). It follows that ℓk is supported on Mk. Notice that ℓ is not a Radon measure, but is a countable sum of finite measures.


Brownian Motion Radon Measure Hausdorff Measure Borel Subset Dirac Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ciesielski,Z. Taylor,S.J.: First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103, 434–450 (1962)MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Dynkin,E.B.: Random fields associated with multiple points of the Brownian motion. J. Funct. Anal. 62, 397–434 (1985)Google Scholar
  3. [3]
    Federer,H.: Geometric Measure Theory. Springer-Verlag, Berlin Heidelberg New-York 1969.MATHGoogle Scholar
  4. [4]
    Le Gall, J.F.: Le comportement du mouvement brownien entre les deux instants où il passe par un point double. J. Funct. Anal. 71, 246–262 (1987)MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Le Gall,J.F.: The exact Hausdorff measure of Brownian multiple points. Seminar on Stochastic Processes 1986, 107–137. Birkhäuser Boston 1987.Google Scholar
  6. [6]
    Perkins,E.A.: The exact Hausdorff measure of the level sets of Brownian motion. Z. Wahrsch. verw. Gebiete 58, 373–388 (1981)MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Rosen,J.: Self-intersections of random fields. Ann. Probab. 12, 108–119 (1984)MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Taylor,S.J.: The exact Hausdorff measure of the sample path for planar Brownian motion. Proc. Camb. Philos. Soc. 60,253–258 (1964)CrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser Boston 1989

Authors and Affiliations

  • Jean-François Le Gall
    • 1
  1. 1.Laboratoire de Probabilités de l’Univ. Paris 6Paris Cedex 05France

Personalised recommendations