# The Exact Hausdorff Measure of Brownian Multiple Points, II

• Jean-François Le Gall
Chapter
Part of the Progress in Probability book series (PRPR, volume 17)

## Abstract

The purpose of this note is to sharpen a result established in [5] concerning the Hausdorff measure of the set of multiple points of a d-dimensiohal Brownian motion. Let X = (Xt, t ≥ 0) denote a standard two-dimensional Brownian motion and, for every integer k ≥ 1, let Mk, denote the set of k-multiple points of X (a point z is said to be k-multiple if there exist k distinct times $$0 \leqslant t_1 < \ldots < t_k$$ such that $$X_{t_1 } = \ldots = X_{t_k } = z$$). A canonical measure on Mk, can be constructed as follows. Set: The intersection local time of X with itself, at the order k, is the Radon measure on J k formally defined by:
$${\alpha _{\text{k}}}({\text{d}}{{\text{t}}_1}...{\text{d}}{{\text{t}}_{\text{k}}}) = {\delta _{(0)}}({{\text{X}}_{{{\text{t}}_1}}} - {{\text{X}}_{{{\text{t}}_2}}})...{\delta _{(0)}}({{\text{X}}_{{{\text{t}}_{{\text{k}} - 1}}}} - {{\text{X}}_{{{\text{t}}_{\text{k}}}}})\;{\text{d}}{{\text{t}}_1}...{\text{d}}{{\text{t}}_{\text{k}}}$$
where δ(0) denotes the Dirac measure at 0 in ℝ2. A precise definition of α k may be found in Rosen [7] or Dynkin [2]. As the previous formal definition suggests, the measure α k is supported on the set $$\left\{ {({{\text{t}}_{{1}}},...,{{\text{t}}_{\text{k}}});{{\text{X}}_{{{{\text{t}}_{{1}}}}}} = ... = {{\text{X}}_{{{{\text{t}}_{\text{k}}}}}}} \right\}$$ of k-multiple times. Let ℓk denote the image measure of αk by the mapping $$({{\text{t}}_{{1}}},...,{{\text{t}}_{\text{k}}}) \to {{\text{X}}_{{{{\text{t}}_{{1}}}}}}$$. It follows that ℓk is supported on Mk. Notice that ℓ is not a Radon measure, but is a countable sum of finite measures.

## Preview

Unable to display preview. Download preview PDF.

### References

1. [1]
Ciesielski,Z. Taylor,S.J.: First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103, 434–450 (1962)
2. [2]
Dynkin,E.B.: Random fields associated with multiple points of the Brownian motion. J. Funct. Anal. 62, 397–434 (1985)Google Scholar
3. [3]
Federer,H.: Geometric Measure Theory. Springer-Verlag, Berlin Heidelberg New-York 1969.
4. [4]
Le Gall, J.F.: Le comportement du mouvement brownien entre les deux instants où il passe par un point double. J. Funct. Anal. 71, 246–262 (1987)
5. [5]
Le Gall,J.F.: The exact Hausdorff measure of Brownian multiple points. Seminar on Stochastic Processes 1986, 107–137. Birkhäuser Boston 1987.Google Scholar
6. [6]
Perkins,E.A.: The exact Hausdorff measure of the level sets of Brownian motion. Z. Wahrsch. verw. Gebiete 58, 373–388 (1981)
7. [7]
Rosen,J.: Self-intersections of random fields. Ann. Probab. 12, 108–119 (1984)
8. [8]
Taylor,S.J.: The exact Hausdorff measure of the sample path for planar Brownian motion. Proc. Camb. Philos. Soc. 60,253–258 (1964)