Asymptotic Error Bounds for Power Approximations to Multinomial Tests of Fit

  • F. C. Drost
  • W. C. M. Kallenberg
  • D. S. Moore
  • J. Oosterhoff

Abstract

The Cressie-Read (1984) class of goodness-of-fit tests is considered. Asymptotic error bounds are derived for two new non-local approximations, the classical noncentral X 2 approximation, a moment-corrected version of it and normal approximations to the power of these tests.

Keywords

Covariance Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharya, R.N. and Ranga Rao, R. (1976), Normal Approximation and Asymptotic Expansions. Wiley, New York.Google Scholar
  2. Broffitt, J.D. and Randies, R.H. (1979), A power approximation for the chisquare goodness-of-fit test: simple hypothesis case. J. Amer. Statist. Assoc. 72, 604–607.CrossRefGoogle Scholar
  3. Chibisov, D.M. and van Zwet, W.R. (1984), On the Edgeworth expansion for the logarithm of the likelihood ratio. I. Theor. Probability Appl. 29, 427–451.CrossRefGoogle Scholar
  4. Cox, D.R. and Reid, N. (1987), Approximations to noncentral distributions. Canad. J. Statist., 15, 105–114.MathSciNetMATHCrossRefGoogle Scholar
  5. Cressie, N. and Read, T.R. (1984), Multinomial goodness-of-fit tests. J. Roy. Statist. Soc., Ser. B, 46, 440–464.MathSciNetMATHGoogle Scholar
  6. Drost, F.C., Kallenberg, W.C.M., Moore, D.S. and Oosterhoff, J. (1989) Power approximations to multinomial tests of fit. J. Amer. Statist. Assoc. 84, to appear.Google Scholar
  7. Hayakawa, T. (1975), The likelihood ratio criterion for a composite hypothesis under a local alternative. Biometrika 62, 451–460.MathSciNetMATHCrossRefGoogle Scholar
  8. Hayakawa, T. (1977), The likelihood ratio criterion and the asymptotic expansion of its distribution. Ann. Inst Statist. Math. 129, Part A, 359–378.MathSciNetCrossRefGoogle Scholar
  9. Larntz, K. (1978), Small sample comparisons of exact levels for chisquared goodness of fit statistics. J. Amer. Statist. Assoc. 73, 253–263.MATHCrossRefGoogle Scholar
  10. Moore, D.S. (1984), Measures of lack of fit from tests of chi-squared type. J. Statist. Planning and Inf. 10, 151–166.MATHCrossRefGoogle Scholar
  11. Morris, C. (1975), Central limit theorems for multinomial sums. Ann. Statist. 3, 165–188.MathSciNetCrossRefGoogle Scholar
  12. Patnaik, P.B. (1949), The non-central X 2 and F distributions and their applications. Biometrika 36, 202–232.MathSciNetMATHGoogle Scholar
  13. Peers, H.W. (1971), Likelihood ratio and associated test criteria. Biometrika 58, 577–587.MATHCrossRefGoogle Scholar
  14. Read, T.R. (1984a), Small-sample comparisons for the power divergence goodness-of-fit statistics. J. Amer. Statist. Assoc. 79, 929–935.MathSciNetCrossRefGoogle Scholar
  15. Read, T.R. (1984b), Closer asymptotic approximations for the distributions of the power divergence goodness-of-fit statistics. Ann. Inst. Statist. Math. 36, Part A, 59–69.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1989

Authors and Affiliations

  • F. C. Drost
    • 1
  • W. C. M. Kallenberg
    • 2
  • D. S. Moore
    • 3
  • J. Oosterhoff
    • 4
  1. 1.Economic InstituteUniversity of TilburgThe Netherlands
  2. 2.Dept. of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands
  3. 3.Dept. of StatisticsPurdue UniversityWest LafayetteUSA
  4. 4.Dept. of Applied Mathematics and Computer ScienceFree UniversityAmsterdamThe Netherlands

Personalised recommendations