Skip to main content

Future Trends in Microcirculation Research

  • Chapter
Microvascular Mechanics

Abstract

The primary function of the terminal vascular bed—the orderly exchange of materials between the blood and parenchymal tissue—is dependent upon the coupling of volumetric flow with the surface area available for exchange. For most tissues, this process involves exchange not only under basal or steady state conditions, but under greatly increased flow rates in line with changing metabolic needs. In structures such as skeletal muscle, a five-10-fold increase in volumetric flow may be required, whereas in others a fairly uniform level of flow is maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berne RM (1964) Metabolic regulation of blood flow. Circ Res 14 (Suppl 1): 1–261.

    Google Scholar 

  • Borgstrom P, Gestrelins S (1987) Integrated myogenic and metabolic control of vascular tone in skeletal muscle during autoregulation of blood flow. Microvasc Res 33: 353–376.

    Article  Google Scholar 

  • Chambers R, Chambers ER (1961) Explorations into the Nature of the Living Cell Harvard University Press, Cambridge, MA, pp 81–87.

    Google Scholar 

  • Chambers R, Zweifach BW (1940) Capillary and endothelial cement in relation to permeability. J Cell Comp Physiol 15: 255–272.

    Article  Google Scholar 

  • Chambers R, Zweifach BW (1944) Topography and function of the mesenteric circulation. Am J Anat 75: 173–205.

    Article  Google Scholar 

  • Colantuoni, A. Bertuglia S, Intaglietta M (1984) Quantitation of rhythmic diameter changes in arterial microcirculation. Am J Physiol 246. H507–H517.

    Google Scholar 

  • Crone C (1963) The permeability of capillaries in various organs as determined by the use of the “indicator diffusion” method. Acta Physiol Scand 58: 292–305.

    Article  Google Scholar 

  • Curry FE, Michel CC (1980) A fiber matrix model of capillary permeability. Microvasc Res 20: 96–99.

    Article  Google Scholar 

  • Davis E (1980) Clinical vasomicroscopy. In Kaley G, Altura BM (eds) Microcirculation, Vol III. University Park Press, Baltimore, pp 223–234.

    Google Scholar 

  • Ditzel J, Sagild U (1954) Morphologic and hemodynamic changes in the smaller blood vessels in diabetes mellitus. II The degenerative and hemodynamic changes in the bulbar conjunctiva of normotensive diabetic patients. N Engl J Med 250: 587–591.

    Article  Google Scholar 

  • Fagrell B, Tooke J, Ostergren J (1984) Vital microscopy for evaluating skin microcirculation in humans. Progr Appl Microcirc 6: 129–140.

    Google Scholar 

  • Folkow B, Neil E (1971) Circulation. Oxford University Press, London, pp 97–124.

    Google Scholar 

  • Folkow B, Hallback M, Lundgren Y, Weiss L (1970) Structurally based increase of flow resistance in spontaneously hypertensive rats. Acta Physiol Scand 79: 373–378.

    Article  Google Scholar 

  • Furchgott RF (1984) The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol 24: 115–191.

    Google Scholar 

  • Grände P-O, Lund vail J, Meilander S (1977) Evidence for a rate-sensitive regulatory mechanism in myogenic microvascular control. Acta Physiol Scand 99: 432–447.

    Article  Google Scholar 

  • Granger HJ, Meininger GH, Borders JL, Morff RJ, Goodman AH (1984) Microcirculation of skeletal muscle. In Mortillaro N (ed) The Physiology and Pharmacology of the Microcirculation, Vol 2. Academic Press, New York, pp 181–265.

    Google Scholar 

  • Hammersen F (1970) The terminal vascular bed in skeletal muscle with special regard to the problem of shunts. In Crone C, Lassen NA (eds) Capillary Permeability. ( Proceedings of the A-Benzon Symposium II.) Academic Press, New York, pp 341–350.

    Google Scholar 

  • Intaglietta M (1983) Wave-like characteristics of vasomotion. Progr Appl Microcirc 3: 83–94.

    Google Scholar 

  • Johnson PC (1986) Autoregulation of blood flow. Circ Res 59: 483–495.

    Google Scholar 

  • Krogh A (1929) The Anatomy and Physiology of Capillaries. Yale University Press, New Haven, CT.

    Google Scholar 

  • Majno G, Shea SM, Leventhal M (1969) Endothelial contraction induced by histamine type mediators: An electron microscopic study. J Cell Biol 42: 647–672.

    Article  Google Scholar 

  • Meyer JU, Borgstrom P, Lindbom L, Intaglietta M (1988) Vasomotion patterns in skeletal muscle arterioles during changes in arterial pressure. Microvasc Res 35:193– 203.

    Article  Google Scholar 

  • Minamiyama M, Yagi SI (1988) Measuring the dimensions of a thin cylindrical vessel by processing ultrasonic reflections with an MEM Cepstrium. In Manabe H, Zweifach BW, Messmer K (eds) Microcirculation in Circulatory Disorders. Springer-Verlag, Tokyo, pp 451–456.

    Google Scholar 

  • Mito K, Ogasawara Y, Hiramatsu O, Wada Y, Tsuijioka K, Kajiya F (1988) Evaluation of blood flow velocity waveforms in intramyocardial artery and vein by Laser Doppler velocimeter with an optical fiber. In Manahe H, Zweifach BW, Messmer K (eds) Microcirculation in Circulatory Disorders. Springer-Verlag, Tokyo, pp 525–528.

    Google Scholar 

  • Ragen DMS, Schmidt EE, MacDonald DC, Groom AC (1988) Spontaneous cyclic contractions of the capillary wall in vivo. Impeding red cell flow: A quantitative analysis. Evidence for endothelial contractility. Microvasc Res 36: 13–30.

    Article  Google Scholar 

  • Reilly FD, McCuskey RS (1977) Studies of the hemopoietic environment. VI. Regulatory mechanisms in the splenic microvascular system of mice. Microvasc Res 13:79– 90.

    Article  Google Scholar 

  • Renkin EM, Curry FE (1978) Transport of water and solutes across capillary endothelium. In Giebisch G, Tosteson DC, Ussing HH (eds) Membrane Transport in Biology. IV. A, B Transport Organs. Publisher, City, pp 1–45.

    Google Scholar 

  • Schmid-Schönbein GW, Engler RL (1987) Granulocytes as active participants in acute myocardial ischemia and infarction. Am J Cardiovasc Pathol 1: 15–30.

    Google Scholar 

  • Shepro D, D’Amore PA (1984) Physiology and biochemistry of the vascular wall endothelium. In Renkin EM, Michel CC (eds) Handbook of Physiology, Sec 2, The Cardiovascular System. Vol IV, Pt 1. American Physiological Society, Bethesda, MD, pp 103–164.

    Google Scholar 

  • Simionescu N (1983) Cellular aspects of transcapillary exchange. Physiol Rev 63: 1536–1579.

    Google Scholar 

  • Somlyo AV, Vinall P, Somlyo AP (1969) Excitation-contraction coupling and electrical events in two types of vascular smooth muscle. Microvasc Res 1: 354–373.

    Article  Google Scholar 

  • Tilton RG, Kilo C, Williamson JR (1979) Pericyte-endothelial relationships in cardiac and skeletal muscle capillaries. Microvasc Res 18: 325–335.

    Article  Google Scholar 

  • Vanhouette PM, Rubanyi GM, Miller VM, Houston DS (1986) Modulation of vascular smooth muscle contraction by the endothelium. Annu Rev Physiol 48: 307–320.

    Article  Google Scholar 

  • Zweifach BW, Lipowsky HH (1984) Pressure-flow relations in blood and lymph microcirculation. In Renkin EM, Michel CC (eds) Handbook of Physiology Sec 2, The Cardiovascular System. Vol IV. The Microcirculation Part 1. American Physiological Society, Bethesda, MD, pp 251–307.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Zweifach, B.W. (1989). Future Trends in Microcirculation Research. In: Lee, JS., Skalak, T.C. (eds) Microvascular Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3674-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3674-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8198-6

  • Online ISBN: 978-1-4612-3674-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics