Skip to main content

A Model of Arthropod Movement Within Agroecosystems

  • Conference paper
Estimation and Analysis of Insect Populations

Part of the book series: Lecture Notes in Statistics ((LNS,volume 55))

Abstract

The negative binomial distribution often describes the distribution of arthropods within agroecosystems. When mobile arthropods are disrupted, such as may occur during chemical applications or changes in climatic conditions, they tend to move until they are again in a negative binomial distribution. While arthropod movement continues, the distribution remains negative binomial. This paper gives a mathematical model for this behavior. The movement of each arthropod is modeled using a Markov process based on a common transition function which is doubly stochastic and irreducible. The arthropods move independently except that the time until an arthropod moves is exponentially distributed with a mean proportional to the number of arthropods on the plant. Using this type of interaction, the Bose-Einstein distribution (which assigns equal probability to distinguishable spatial patterns) is the equilibrium distribution. If the number of arthropods and plants are each as large as 100, this distribution is closely approximated by the geometric distribution which is the limiting distribution. The geometric is a special case of the negative binomial distribution (k = 1) and is often observed when the sampling unit is the minor habitat of the arthropod. Parallels are drawn between the study of particles in a phase space and the distribution of arthropods in agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anscombe, F. J. 1949. The statistical analysis of insect counts based on the negative binomial distribution. Biometrics5: 165 – 173.

    Article  Google Scholar 

  • Bliss, C. I. 1971. The aggregation of species within spatial units, pp. 311–336. InG. P. Patii, E. C. Pielou, W. E. Waters [eds.], Statistical Ecology, Vol. 1. The Pennsylvania State University Press, University Park, PA.

    Google Scholar 

  • Boswell, M. T. & G. P. Patii. 1970. Chance mechanisms generating the negative binomial distribution, pp. 3–22. InG. P. Patii, [ed.], Random Counts in Scientific Work, Vol. 1. The Pennsylvania State University Press, University Park, PA.

    Google Scholar 

  • Dingle, H. 1974. The experimental analysis of migration and life history strategies in insects, pp. 329–342. InL. Barton—Browne [ed.], Experimental Analysis of Insect Behaviour. Springer—Verlag, Berlin.

    Google Scholar 

  • Hamilton, W. D. & R. M. May. 1977. Dispersal in stable habitats. Nature269: 578 – 581.

    Article  Google Scholar 

  • Hasseil, M. P. 1978. The dynamics of arthropod predator—prey systems. Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • Hassell, M. P. & R. M. May. 1986. Generalist and specialist natural enemies in insect predator-prey interactions. J. Anim. Ecol55: 923 – 940.

    Article  Google Scholar 

  • Leslie, P. H. and J. C. Gower. 1960. The properties of a stochastic model for the predator—prey type of interaction between two species. Biometrika47: 219 – 234.

    MathSciNet  MATH  Google Scholar 

  • Motro, U. 1982a. Optimal rates of dispersal I. Haploid populations. Theor. Pop. Biol23: 394 – 411

    Article  MathSciNet  Google Scholar 

  • Motro, U. 1982b. Optimal rates of dispersal II. Diploid populations. Theor. Pop. Biol.21: 412 – 429.

    Article  MathSciNet  MATH  Google Scholar 

  • Motro, U. 1983. Optimal rates of dispersal III. Parent—Offspring conflict. Theor. Pop. Biol.23: 159 – 168.

    Article  MATH  Google Scholar 

  • Murdoch, W. W. & A. Oaten. 1975. Prédation and population stability, pp. 2–131. InA. MacFadyen [ed.]. Adv. Ecol Res. Vol. 9. Academic Press, London.

    Google Scholar 

  • Pathria, R. K. 1972. Statistical Mechanics. Pergamon Press, Braunschweig.

    Google Scholar 

  • Pianka, E. R. 1981. Competition and niche theory, pp. 167–196. InR. M. May [ed.], Theoretical Ecology: Principles and Applications, 2nd Ed. Sinauer Associated, Inc., Sunderland, MA.

    Google Scholar 

  • Rankin, M. A. & M. C. Singer. 1984. Insect movement: Mechanisms and effects, pp. 185–216. InC. B. Huffaker and R. L. Rabb [eds.], Ecological Entomology. John Wiley and Sons, New York.

    Google Scholar 

  • Skellam, J. G. 1973. The formulation and interpretation of mathematical models of diffusionary processes in population biology, pp. 63–85. InM. S. Bartlett and R. W. Hiorns [eds.], The Mathematical Theory of the Dynamics of Biological Populations. Academic Press, New York.

    Google Scholar 

  • Spitzer, F. 1970. Interaction of Markov processes. Advances in Math. 5: 246 – 290.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, L. R. 1984. Assessing and interpreting the spatial distribution of insect populations. Ann. Rev. Entomol.29: 321 – 357.

    Article  Google Scholar 

  • Waymire, E. 1980. Zero—range interaction at Bose—Einstein speeds under a positive recurrent single particle law. Ann. Prob.8: 441 – 450.

    Article  MathSciNet  MATH  Google Scholar 

  • Willson, Linda J., J. L. Folk & J. H. Young. 1984. Multistage estimation compared with fixed—sample—size estimation of the negative binomial parameter k. Biometrics40: 109 – 117.

    Article  Google Scholar 

  • Willson, Linda J. & J. H. Young. 1983. Sequential estimation of insect population densitites with a fixed coefficient of variation. Environ. Entomol.12: 669 – 672.

    Google Scholar 

  • Willson, L. J., J. H. Young & J. L. Folks. 1987. A biological application of Bose—Einstein statistics. Commun. Statist. Theor. Meth.16: 445 – 459.

    Article  MathSciNet  Google Scholar 

  • Young, J. H. & L. J. Willson. 1987. The use of Bose—Einstein statistics in population dynamics models of arthropods. Ecol. Model.36: 89 – 99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Young, L.J.W., Young, J.H. (1989). A Model of Arthropod Movement Within Agroecosystems. In: McDonald, L.L., Manly, B.F.J., Lockwood, J.A., Logan, J.A. (eds) Estimation and Analysis of Insect Populations. Lecture Notes in Statistics, vol 55. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3664-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3664-1_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96998-5

  • Online ISBN: 978-1-4612-3664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics