Skip to main content

Additions to the Theory of Algebras with Straightening Law

  • Conference paper
Commutative Algebra

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 15))

Abstract

In this article we want to supplement the theory of algebras with straightening law, ASLs for short, by two additions. The first addition concerns the arithmetical rank of ideals generated by an ideal of the poset underlying the ASL. (The arithmetical rank is the least number of elements generating an ideal up to radical.) It turns out that there is a general upper bound only depending on the combinatorial data of the poset. In particular we discuss ideals generated by monomials and show that the ideas leading to the general bound can be used to derive sharper results in this special case. On the other hand there exists a class of ASLs, called symmetric, in which the general bound is always precise. This class includes the homogeneous coordinate rings of Grassmannians, and perhaps the most prominent result in this context is the determination of the least number of equations defining a Schubert subvariety of a Grassmannian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. L. Avramov, A class of factorial domains, Serdica 5 (1979), 378–379.

    MathSciNet  MATH  Google Scholar 

  2. L. L. Avramov, Complete intersections and symmetric algebras, J. Algebra 73 (1981), 248–263.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Bruns, Generic maps and modules, Compos. Math. 47 (1982), 171–193.

    MathSciNet  MATH  Google Scholar 

  4. W. Bruns, Divisors on varieties of complexes, Math. Ann. 264 (1983), 53–71.

    Article  MathSciNet  MATH  Google Scholar 

  5. BKM] W. Bruns, A. Kustin and M. Miller, The resolution of the generic residual intersection of a complete intersection, (to appear).

    Google Scholar 

  6. W. Bruns and A. Simis, Symmetric algebras of modules arising from a fixed submatrix of a generic matrix, J. Pure Appl. Algebra 49 (1987), 227–245.

    Article  MathSciNet  MATH  Google Scholar 

  7. BST] W. Bruns, A. Simis and Ngó Viet Trung, Blow-up of straightening closed ideals in ordinal Hodge algebras, (to appear).

    Google Scholar 

  8. W. Bruns and U. Vetter, “Determinantal rings,” Springer Lect. Notes Math. 1327, 1988.

    Google Scholar 

  9. BV.2] W. Bruns and U. Vetter, Modules defined by generic symmetric and alternating maps, (to appear).

    Google Scholar 

  10. D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447–485.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Cowsik and M. V. Nori, On the fibers of blowing up, J. Indian Math. Soc. 40 (1976), 217–222.

    MathSciNet  MATH  Google Scholar 

  12. C. De Concini, D. Eisenbud and C. Procesi, Young diagrams and determi¬nantal varieties, Invent. Math. 56 (1980), 129–165.

    Article  MathSciNet  Google Scholar 

  13. C. De Concini, D. Eisenbud and C. Procesi, “Hodge algebras,” Astérisque 91, 1982.

    Google Scholar 

  14. C. De Concini and E. Strickland, On the variety of complexes, Adv. Math. 41 (1981), 57–77.

    MATH  Google Scholar 

  15. D. Eisenbud, Introduction to algebras with straightening laws, in “Ring Theory and Algebra III,” M. Dekker, New York and Basel, 1980, pp. 243–267.

    Google Scholar 

  16. D. Eisenbud and C. Huneke, Cohen-Macaulay Rees algebras and their specializations, J. Algebra 81 (1983), 202–224.

    Article  MathSciNet  MATH  Google Scholar 

  17. H.-G. Grabe, Uber den arithmetischen Rang quadratfreier Potenzproduktideale, Math. Nachr. 120 (1985), 217–227.

    Article  MathSciNet  Google Scholar 

  18. R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. Math. 88 (1968), 403–450.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Herzog and V. Vasconcelos, On the divisor class group of Rees algebras, J. Algebra 93 (1985), 182–188.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Hochster, Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay, J. Algebra 25 (1973), 40–57.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, in “Commutative algebra and combinatorics,” Advanced Studies in Pure Mathematics 11, 1987, pp. 93–109.

    MathSciNet  Google Scholar 

  23. C. Huneke, Powers of ideals generated by weak d-sequences, J. Algebra 68 (1981), 471–509.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Kleppe and D. Laksov, The algebraic structure and deformation of Pfaffian schemes, J. Algebra 64 (1980), 167 - 189.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Matsumura, “Commutative Algebra,:” Second Ed., Benjamin/Cummings, Reading, 1980.

    Google Scholar 

  26. P. E. Newstead, Some subvarieties of Grassmannians of codimension 3, Bull. London Math. Soc. 12 (1980), 176–182.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Bruns, W. (1989). Additions to the Theory of Algebras with Straightening Law. In: Hochster, M., Huneke, C., Sally, J.D. (eds) Commutative Algebra. Mathematical Sciences Research Institute Publications, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3660-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3660-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8196-2

  • Online ISBN: 978-1-4612-3660-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics