Skip to main content

Abstract

Abamectin (MK-0936) is a natural fermentation product of Streptomyces avermitilis. Ivermectin (MK-0933) is a synthetic derivative of abamectin. The chemical structure of abamectin differs from ivermectin only in the bond between carbons 22 and 23; abamectin has a double bond where ivermectin has a single bond and additional hydrogens on C-22 and C-23 (Figure 6.1). Both compounds are a mixture of homologous products with B1a and B1b components. The B1b component differs chemically from the B1a component by only 1 methylene (CH2) unit at the 26-carbon position: the ethyl group (C2H5) is a methyl group (CH3) in the B1b form. Abamectin and ivermectin are defined as containing a minimum of 80% B1a, and a maximum of 20% B1b components. Studies in our laboratories have clearly demonstrated that the individual components have very similar biological and toxicological properties and, for all practical purposes, can be considered equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amano Y (1967) Changes of the levels of blood glucose during pregnancy in the rat. Jap. J. Pharmacol. 17:105–114

    Article  PubMed  CAS  Google Scholar 

  • Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test. Mutat. Res. 31:347–364

    PubMed  CAS  Google Scholar 

  • Betz L, Goldstein GN (1981) Developmental changes in metabolism and transport properties of capillaries isolated from rat brain. J. Physiol. 312:365–376

    PubMed  CAS  Google Scholar 

  • Bohr V, Mollgard K (1974) Tight junctions in human fetal choroid plexus visualized by freeze-etching. Brain Res. 81:314–318

    Article  PubMed  CAS  Google Scholar 

  • Brent RL (1986) Definition of a teratogen and the relationship of teratogenicity to carcinogenicity. Teratol. 34:359–360

    Article  CAS  Google Scholar 

  • Campbell WC, Benz GW (1984) Ivermectin: a review of efficacy and safety. J. Vet. Pharm. & Therap. 7:1–16

    Article  CAS  Google Scholar 

  • Chiu SH, Sestokas E, Taub R, Buhs RP, Green M, Sestokas R, Vandenheuval WJ, Arison BH, Jacob TA (1986) Metabolic disposition of ivermectin in tissues of cattle, sheep, and rats. Drug Me tab. & Dispos. 14:590–600

    CAS  Google Scholar 

  • Clive D, Flamm W, Machesko M, Bernheim J (1972) A mutational assay system using the thymidine binase locus in mouse lymphoma cells. Mutat. Res. 16:77–87

    PubMed  CAS  Google Scholar 

  • Clive D, Spector JASF (1975) Laboratory procedure for assessing specific locus mutations at the TK locus in cultured L5178Y mouse lymphoma cells. Mutat. Res. 31:17–29

    PubMed  CAS  Google Scholar 

  • Cooper JR (1982) Amino acids. In Cooper JR, Bloom FR, Roth RH (eds), The Biochemical Basis of Neuropharmacology, 4th ed., Oxford University Press, p 250

    Google Scholar 

  • Cutler SJ, Ederer F (1958) Maximum utilization of the life table method in analyzing survival. J. Chron. Dis. 8:699–712

    Article  PubMed  CAS  Google Scholar 

  • Greene BM, Taylor HR, Cupp EW, Murphy RP, White AT, Aziz MA, Schulz-Key H, D’Anna SA, Newland HS, Goldschmidt LP, Auer C, Hanson AP, Freeman SV, Reber EW, Williams PN (1985) Comparison of ivermectin and diethylcarbamazine in the treatment of onchocerciasis. New Eng. J. Med. 313:133–138

    Article  PubMed  CAS  Google Scholar 

  • Harter HL (1957) Error rates and sample sizes for range tests in multiple comparisons. Biometrics 13:511–36

    Article  Google Scholar 

  • Khera KS (1984) Maternal Toxicity—A possible factor in fetal malformation in mice. Teratol. 29:411–416

    Article  CAS  Google Scholar 

  • Mantel N (1963) Chi-square tests with one degree of freedom; extensions of the Mantel-Haenszel procedure. J. Am. Stat. Assoc. 58:690–700

    Article  Google Scholar 

  • Mantel N (1980) Assessing laboratory evidence for neoplastic activity. Biometrics 36:381–99

    Article  PubMed  CAS  Google Scholar 

  • Mantel N, Ciminera J (1979) Use of log-rank scores in the analysis of litter- matched data on time to tumor appearance. Cane. Res. 39:4308–4315

    CAS  Google Scholar 

  • Mantel N, Tukey JW, Ciminera JL, Heyse, JF (1982) Tumorigenicity assays, including use of the jackknife. Biomet. J. 24:579–596

    Article  Google Scholar 

  • Peto R (1974) Guidelines on the analysis of tumor rates and death rates in experimental animals. Brit. J. Cane. 29:101–105

    Article  CAS  Google Scholar 

  • Peto R, Pike MC, Day NE, Gray RC, Lee PN, Parish S, Peto J, Richards S, Wahrendorf J (1980) Guidelines for simple, sensitive significance tests for carcinogenic effects in long term animal experiments. In International Association for Research on Cancer Monographs, Supplement 2, Lyon, France, pp. 365–367

    Google Scholar 

  • Robson DS (1959) A simplified method for constructing orthogonal polynomials when independent variable is unequally spaced. Biometrics 15:187–191

    Article  Google Scholar 

  • Saunders NR (1977) Ontogeny of the blood-brain barrier. Exper. Eye Res. (Suppl.), pp 523–550

    Google Scholar 

  • Scow RO, Chernick SS, Brinley MS (1964) Hyperlipemia and ketosis in the pregnant rat. Am. J. Physiol. 206:796–804

    PubMed  CAS  Google Scholar 

  • Setlow RB, Carrier WL (1964) The disappearance of thymine dimers from DNA: An error correcting mechanism. Proc. Natl. Acad. Sci. USA 51:226–231

    Article  PubMed  CAS  Google Scholar 

  • Tukey JW, Ciminera JL, Heyse JF (1985) Testing the statistical certainty of a response to increasing doses of a drug. Biometrics 41:295–301

    Article  PubMed  CAS  Google Scholar 

  • Wester RC, Maibach HI (1975) Percutaneous absorption in the rhesus monkey compared to man. Toxicol. & App. Pharm. 32:394–398

    Article  CAS  Google Scholar 

  • Wester RC, Maibach HI (1983) Cutaneous pharmacokinetics. 10 steps to percutaneous absorption. Drug Metab. Rev. 14(2): 169–205

    Article  PubMed  CAS  Google Scholar 

  • Wilkins RJ, Hart RW (1973) Preferential DNA repair in human cells. Nature 247:35–36

    Article  Google Scholar 

  • Williams GM, Laspia MF, Dunkel, VC (1982) Reliability of the hepatocyte primary culture/DNA repair test in testing coded carcinogens and non- carcinogens. Mutat. Res. 97:359–370

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Lankas, G.R., Gordon, L.R. (1989). Toxicology. In: Campbell, W.C. (eds) Ivermectin and Abamectin. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3626-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3626-9_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8184-9

  • Online ISBN: 978-1-4612-3626-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics