Advertisement

Adsorbed Salivary Proline-Rich Proteins as Bacterial Receptors on Apatitic Surfaces

  • R. J. Gibbons
  • D. I. Hay

Abstract

Indigenous and pathogenic bacteria display surprisingly specific tropisms for colonizing various tissues, and hosts. Even within the human mouth, bacteria display remarkable predilections for colonizing different sites (for review, see 10, 11). For example, Streptococcus salivarius is a prominent inhabitant of the tongue dorsum, but it is found in only low proportions on the teeth. In contrast, S. sanguis, S. mutans, Actinomyces viscosus and Bacteroides gingivalis are found in highest proportions on the teeth (7,8,11,35,36). Not only do these organisms make the teeth their primary habitat, but they actually seem to require the presence of teeth in order to colonize the mouth; theseorganisms are not usually detected in the mouths of predentate infants, and they disappear from the oral cavity following the extraction of all teeth.

Keywords

Dental Plaque Salivary Protein Parotid Saliva Eikenella Corrodens Apatitic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azen, E.A. and Denniston, C. 1981. Genetic polymorphism of PIF (parotid isoelectric focusing variant) p rote ins with linkage to the PPP (parotid proline-rich protein) gene complex. Biochem. Genetics 19:475– 485.Google Scholar
  2. 2.
    Bennick, A. 1987. Structural and genetic aspects of proline-rich proteins. J. Dent. Res. 66: 457–461.PubMedCrossRefGoogle Scholar
  3. 3.
    Bennick, A. and Connell, G.E. 1971. Purification and partial characterization of four proteins from human parotid saliva. Biochem. J. 123: 455–464.Google Scholar
  4. 4.
    Bennick, A., Chau, G., Goodlin, R., Abrams, S., Tustian, D. and Madapallimattam, G. 1983. The role of human salivary acidic proline-rich proteins in the formation of acquired dental pellicle in vivo and their fate after adsorption to the human enamel surface. Archs. Oral Biol. 28: 19–27.CrossRefGoogle Scholar
  5. 5.
    Cisar, J.O., Sandberg, A.L. and Mergenhagen, S.E. 1984. The function and distribution of different fimbriae on strains of Actinomyces viscosus and Actinomyces naeslundii. J. Dent. Res. 63: 393–396.PubMedCrossRefGoogle Scholar
  6. 6.
    Clark, W.B., Wheeler, T.T., Lane. D.D. and Cisar, J.O. 1986. Actinomyces adsorption mediated by Type-1 fimbriae. J. Dent. Res. 65: 1166–1168.Google Scholar
  7. 7.
    Ellen, R.P. 1976. Establishment and distribution of Actinomyces viscosus and Actinomyces naeslundii in the human oral cavity. Infec. Immun. 14: 1119–1124.Google Scholar
  8. 8.
    Ellen, R.P., Segel, D.N. and Grove, D.A. 1978. Relative proportions of Actinomyces viscosus and Actinomyces naeslundii in dental plaques collected from single sites. J. Dent. Res. 57: 550.PubMedCrossRefGoogle Scholar
  9. 9.
    Ellen, R.P., Fillery, E.D., Chan, K.H. and Grove, D.A. 1980. Sialidase-enhanced lectin-like mechanism for Actinomyces viscosus and Actinomyces naeslundii hemagglutination. Infec. Immun. 27: 336–343.Google Scholar
  10. 10.
    Gibbons, R.J. 1980. Adhesion of bacteria to surfaces of the mouth. In: Microbial Adhesion to Surfaces. R.C.W. Berkeley, J.M. Lynch, J. Meiling, P.R. Rutter, and B. Vincent, Eds., Soc. Chemical Industry, pp. 351–388.Google Scholar
  11. 11.
    Gibbons, R.J. 1984. Adherent interactions which may affect microbial ecology in the mouth. J. Dent. Res. 63: 378–385.PubMedCrossRefGoogle Scholar
  12. 12.
    Gibbons, R.J. and van Houte, J. 1975. Bacterial adherence in oral microbial ecology. Ann. Revs. Microbiol. 29: 19–44.CrossRefGoogle Scholar
  13. 13.
    Gibbons, R.J. and van Houte, J. 1980. Bacterial adherence and the formation of dental plaques. In: Bacterial Adherence. E.H. Beachey, Ed., Chapman and Hall, London, pp. 61–104.Google Scholar
  14. Gibbons, R.J. and Etherden, 1. 1985. Albumin as a blocking agent in studies of streptococcal adsorption to experimental pellicles, Infec. Immun. 50: 592–594.Google Scholar
  15. 15.
    Gibbons, R.J., Cohen, L. and Hay, D.I. 1986. Strains of Streptococcus mutans and Streptococcus sobrinus attach to different pellicle receptors. Infec. immun. 52: 555–561.Google Scholar
  16. 16.
    Gibbons, R.J. and Hay, D.I. 1988. Human salivary acidic proline-rich proteins and statherin promote the attachment of Actinomyces viscosus LY7 to apatitic surfaces. Infec. Immun. 56: 439–445.Google Scholar
  17. 17.
    Gibbons, R.J., Hay, D.I., Cisar, J. and Clark, W.F. 1988. Unpublished data.Google Scholar
  18. 18.
    Hay, D.I. 1983. Human glandular salivary proteins. In: CRC Handbook of Experimental Aspects of Oral Biochemistry, E.P. Lazzari, Ed., CRC Press, Inc., Boca Raton, FL, pp. 319–335.Google Scholar
  19. 19.
    Hay, D.I., Moreno, E.C. and Schlesinger, D.H. 1979. phosphoprotein-inhibitors of calcium phosphate precipitation from salivary secretions. Inorg. Persp. in Biol, and Med. 2: 271–285.Google Scholar
  20. 19.
    Hay, D.I., Moreno, E.C. and Schlesinger, D.H. 1979. phosphoprotein-inhibitors of calcium phosphate precipitation from salivary secretions. Inorg. Persp. in Biol, and Med. 2: 271–285.Google Scholar
  21. Isemura, S., Saitoh, E. and Sanada. K. 1980. The Amino-acid sequence of a salivary proline-rich peptide, P-C, and its relation to a salivary proline- rich phosphoprotein, protein C. J. Biochem. (Tokyo) 87: 1071–1077.Google Scholar
  22. 22.
    Jordan, H.V. and Keyes, P.H. 1964. Aerobic gram-positive filamentous bacteria as etiologic agents of experimental periodontal disease in hamsters. Archs. Oral Biol. 9: 401–414.CrossRefGoogle Scholar
  23. 23.
    Kousvelari, E.E., Baratz, R.S., Burke, B. and Oppenheim, F.G. 1980. Immunochemical identification and determination of proline-rich proteins in salivary secretions, enamel pellicle and glandular tissue specimens. J. Dent. Res. 59: 1430–1438.PubMedCrossRefGoogle Scholar
  24. 24.
    Lantz, M.S., Rowland, R. W., Switalski, L.M. and Hook, M. 1986. interaction of Bacteroides gingivalis with fibrinogen, Infec. immun. 54: 654–658.Google Scholar
  25. 25.
    Lipman, D.J. and Pearson, W.R. 1985. Rapid and sensitive protein similarity searches. Science 227: 1435–1441.PubMedCrossRefGoogle Scholar
  26. 26.
    Loesche, W.J. and Syed, S.A. 1978. Bacteriology of human experimental gingivitis: Effect of plaque and gingivitis score. Infec. Immun. 21: 830–839.Google Scholar
  27. 27.
    Mayrand, D. and Holt, S.C. 1988. Biology of asaccharolytic black-pigmented Bacteroides species. Microbiol. Revs. 52: 134–152.Google Scholar
  28. 28.
    Moreno, E.C., Varughese, K. and Hay, D.I. 1979. Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Calcif. Tiss. Int. 28: 7–16.CrossRefGoogle Scholar
  29. 29.
    Moreno. E.C., Kresak, M. and Hay, D.I. 1982. Adsorption thermodynamics of acidic proline-rich salivary proteins onto calcium apatites. J. Biol. Chem. 257: 2981–2989.Google Scholar
  30. 29.
    Moreno. E.C., Kresak, M. and Hay, D.I. 1982. Adsorption thermodynamics of acidic proline-rich salivary proteins onto calcium apatites. J. Biol. Chem. 257: 2981–2989.Google Scholar
  31. 31.
    Oppenheim, F.G., Hay, D.I. and Franzblau, C. 1971. Proline-rich proteins from human parotid saliva. Isolation and partial characterization. Biochem. 10: 4233–4238.CrossRefGoogle Scholar
  32. 32.
    Pearson, W.R. 1987. Protein sequencing and similarity program. Austin Code Works, Austin, TX.Google Scholar
  33. Schlesinger, D.H. and Hay, D.I. 1979. Complete primary structure of a proline-rich phosphoprotein (PRP-4), a potent inhibitor of calcium phosphate precipitation in human parotid saliva. In: Peptides, Structure and Biological Function. Proc. 6th Amer. peptide Symp., G. Gross and J. Meienhofer, Eds. Pierce Chemical Co., Rockford, 111., pp. 133–135.Google Scholar
  34. 34.
    Schlesinger, D.H. and Hay, D.I. 1986. Complete covalent structure of a proline-rich phosphoprotein (PRP-2), an inhibitor of calcium phosphate crystal growth from human parotid saliva. Int. J. Peptide protein Res. 27: 373–379.CrossRefGoogle Scholar
  35. 35.
    Slots, J. and Gibbons, R.J. 1978. Attachment of Bacteroides melaninogenicus Subsp. asaccharolyticus to oral surfaces and its possible role in colonization of the mouth and of periodontal pockets. Infec. Immun. 19: 256–264.Google Scholar
  36. 36.
    Slots, J.R. and Genco, R.J. 1985. Black-pigmented Bacteroides species, Capnocytophoga species, and Actinobacillus actinomycetemcomitans in human periodontal disease: virulence factors in colonization, survival and tissue destruction, J. Dent. Res. 63: 412–421.Google Scholar
  37. 37.
    Summey, D.L. and Jordan, H.V. 1974. Characterization of bacteria isolated from human root surface carious lesions. J. Dent. Res. 53: 343–351.CrossRefGoogle Scholar
  38. 38.
    Syed, S.A. and Loesche, W.J. 1978. Bacteriology of human experimental gingivitis, effect of plaque age. Infec. Immun. 21: 821–829.Google Scholar
  39. 39.
    Wong, R.S. and Bennick, A. 1980. The primary structure of a salivary calcium-binding proline-rich phosphoprotein (protein C), a possible precursor of a related salivary protein A. J. Biol. Chem. 255: 5943– 5948.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • R. J. Gibbons
    • 1
  • D. I. Hay
    • 2
  1. 1.Department of MicrobiologyBostonUSA
  2. 2.Department of Biochemistry Forsyth Dental CenterBostonUSA

Personalised recommendations