Infrared Thermography of Fracture of Concrete and Rock

  • M. P. Luong
Conference paper


Infrared thermography has been used as a nondestructive and noncontact technique to examine the mechanical response of concrete and rock specimens subjected to given static unconfined compressions and to a superimposed vibratory excitation. The parameter investigated in this paper is the heat generation due to energy dissipation by the material which has been excited beyond its stable reversible limit. This useful technique allows accurate illustration of the onset of unstable crack propagation and/or flaw coalescence when increasing irreversible microcracking is generated by vibratory loading.


Rock Salt Vibratory Excitation Infrared Thermography Plain Concrete Unconfined Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Teofers, R., Friden, C., Georgsson, L., A study of the applicability of the Palmgren-Miner partial damage hypothesis, Magazine of Concrete Research, vol. 29, no 100, Sept. 1977, pp. 123–130.CrossRefGoogle Scholar
  2. [2]
    Bergues, J., Terrien, M., Study of concrete’s cracking under multiaxial stresses, Advances in Fracture Research, 5th Int. Conf. on Fracture, Cannes, France, 29 March–3 April 1981.Google Scholar
  3. [3]
    Tepfers, R., Hedberg, B., Szczekocki, G., Absorption of energy in fatigue loading of plain concrete, Matériaux & Construction, vol. 17, no 97, pp. 59–64, Bordas-Dunod, 1984.Google Scholar
  4. [4]
    Hardy, R.H.Tr. and Langer, M., The mechanical behaviour of salt, Proc. 1st Conf. Pensylviana Trans. Tech. Pub. 1981.Google Scholar
  5. [5]
    Stokes, R.J., Fracture of Ceramics, Proc. 4th Symp. on Fundamental Phenomena in the Materials Sciences, Boston Mas. USA. Jan. 31-Feb. 1. 151–175, 1966.Google Scholar
  6. [6]
    Kotsovos, M.D., Newman, J.B., Generalized stress-strain relationsphips for concrete, Journal Eng. Mech. Div., ASCE, vol. 194, no EM4, pp. 845–856, 1978.Google Scholar
  7. [7]
    Bui, H.D., Ehrlacher, A., Nguyen, Q.S., Etude expérimentale de la dissipation dans la propagation de fissure par thermographie infrarouge, Comptes-Rendus Ac. Sci., 293, série II, pp. 1015–1018, 1981.Google Scholar
  8. [8]
    Reifsnider, K.L., Henneke, E.G. and Stinchcomb, W.W., The mechanics of vibrothermography, Mechanics of Nondestructive Testing ed. by Stinchcomb, W.W., 249–276, 1980.Google Scholar
  9. [9]
    Luong, M.P., Characteristic threshold and infrared vibrothermography of sand, Geotechnical Testing GTJ0D5, vol. 9, no 2, 80–86, June 1986).CrossRefGoogle Scholar
  10. [10]
    Luong, M.P., Vibrothermographie infrarouge d’un béton endommagé, C.R.A.S. 301 série II, no 7, Paris 459–464, 1985.Google Scholar
  11. [11]
    Nguyen, Q.S., Thermodynamique des milieux continus, Cours ENPC DEA, Paris, 1985.Google Scholar
  12. [12]
    Luong, M.P., Infrared Vibrothermography of plain concrete, magnetic sound 16 mm film, video Umatic and VHS, PAL-SECAM Systems edited by IMAGICIEL 1984, Ecole Polytechnique, 91128 Palaiseau, France.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • M. P. Luong
    • 1
  1. 1.Centre National de la Recherche Scientifique UA 317Laboratoire de Mécanique des Solides Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations