Skip to main content

Evolution of Octavolateralis Sensory Cells

  • Conference paper
Book cover The Mechanosensory Lateral Line

Abstract

According to the acousticolateralis hypothesis (Ayers 1892; Kingsbury 1895; van Bergeijk 1967), the vertebrate inner ear has its evolutionary origin in the lateral line system. The arguments for the hypothesis were based on (1) the origin of the lateralis nerves from the immediate vicinity of the eighth nerve to the inner ear, (2) the general resemblance of the sensory cells of the two systems, (3) the tendency of the canal neuromasts and inner ear to sink below the surface during ontogenetic development, and (4) the ontogenetic development of both systems from a common epibranchial thickening, or placode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Agar WE (1906) The spiracular gill cleft in Lepidosiren and Protopterus. Anat Anz 28: 298–304.

    Google Scholar 

  • Allis EP (1988) The anatomy and development of the lateral line system in Amia calva. J Morphol 2: 463–567.

    Google Scholar 

  • Andres KH, von Düring M (1984) The platypus bill. A structural and functional model of a pattern-like arrangement of different cutaneous sensory receptors. In: Hamann W, Iggo A (eds) Sensory Receptor Mechanisms. Singapore: World Science, pp. 81–89.

    Google Scholar 

  • Aronova MZ, Alekseeva TM (1984) Ultrastructural organization of putative chemoreceptor cells in the lips of the ctenophore Beroë cucumis. J Evol Biochem Physiol 20: 143–149.

    Google Scholar 

  • Ayers H (1892) Vertebrate cephalogenesis. II. A contribution to the morphology of the vertebrate ear, with a reconsideration of its functions. J Morphol 6: 1–360.

    Google Scholar 

  • Ayers H, Worthington J (1907) The skin end-organs of the trigeminus and lateralis nerves of Bdellostoma dombeyi. Am J Anat 7: 327–336.

    Google Scholar 

  • Baatrup E (1981) Primary sensory cells in the skin of amphioxus (Branchiostoma lanceolatum (P.). Acta Zool (Stockh) 62: 147–157.

    Google Scholar 

  • Barber VC, Dilly PN (1969) Some aspects of the fine structure of the statocysts of the molluscs Pecten and Pterotrachea. Z Zellforsch 94: 462–478.

    PubMed  CAS  Google Scholar 

  • Barry, MA (1987) Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria. J. Comp Neurol 266: 457–477.

    CAS  Google Scholar 

  • Barry MA, Boord RL (1984) The spiracular organ of sharks and skates: Anatomical evidence indicating a mechanoreceptive role. Science 226: 990–992.

    PubMed  CAS  Google Scholar 

  • Bell CC (1981) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195: 391–414.

    PubMed  CAS  Google Scholar 

  • Bennett MVL, Clusin WT (1979) Transduction at electroreceptors: Origins of sensitivity. In: Cone R, Dowling JE (eds) Membrane Transduction Mechanisms. New York: Raven Press, pp. 91–116.

    Google Scholar 

  • Bereiter-Hahn J (1976) Dimethylaminostyrylmethylpyridiniumiodine (Dasmei) as a fluorescent probe for mitochondria in situ. Biochim Biophys Acta 423: 1–14.

    PubMed  CAS  Google Scholar 

  • Bergeijk WA van (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • Bone Q, Best ACG (1978) Ciliated sensory cells in amphioxus (Branchiostoma). J. Mar Biol Assoc UK 58: 479–486.

    Google Scholar 

  • Bone Q, Ryan KP (1978) Cupular sense organs in Ciona (Tunicata: Ascidiacea). J Zool (Lond) 186: 417–429.

    Google Scholar 

  • Bone Q, Anderson PAV, Pulsford A (1980) The communication between individuals in salp chains. I. Morphology of the system. Proc R Soc Lond B 210: 549–558.

    Google Scholar 

  • Bullock TH (1965) Chaetognatha, Pogonophora, Hemichordata, and Chordata Tunicata. In: Bullock TH, Horridge GA (eds) Structure and Function in the Nervous Systems of Invertebrates, Vol. II. San Francisco: Freeman, pp. 1559–1592.

    Google Scholar 

  • Bullock TH (1974) An essay on the discovery of sensory receptors and the assignment of their functions together with an introduction to electroreceptors. In: Fessard A (ed) Handbook of Sensory Physiology, Vol. III/3: Electroreceptors and Other Specialized Receptors in Lower Vertebrates. New York: Springer-Verlag, pp. 1–12.

    Google Scholar 

  • Bullock TH (1982) Electroreception. Annu Rev Neurosci 5: 121–170.

    PubMed  CAS  Google Scholar 

  • Bullock TH, Heiligenberg W (eds) Electroreception. New York: Wiley, 1986, 722 pp.

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: Evidence from convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6: 25–46.

    Google Scholar 

  • Campantico E, Guastalla A, Pirovano R. (1983) Ultrastructural aspects of the lateral-line organs of the normal and hypophysectomized clawed toad, Xenopus laevis (Daudin). Mon Zool Ital (NS) 17: 53–163.

    Google Scholar 

  • Chandler JP (1984) Light and electron microscopic studies of the basilar papilla in the duck, Anas platyrhynchos. II. Embryonic development. J Comp Neurol 222: 523–542.

    PubMed  CAS  Google Scholar 

  • Claas B, Fritzsch B, Münz H (1981) Common efferents to the lateral-line and labyrinthine systems in aquatic vertebrates. Neurosci Lett 27: 231–235.

    PubMed  CAS  Google Scholar 

  • Cobb JLS (1967a) The innervation of the ampulla of the tube foot in the starfish (Astropecten irregularis). Proc Soc Lond B 168: 91–99.

    Google Scholar 

  • Cobb JLS (1967b) The fine structure of the pedicellariae of Echinus esculentus (L.). II. The sensory system. J R Microsc Soc 88: 223–233.

    Google Scholar 

  • Colmers WF (1977) Neuronal and synaptic organization in the gravity receptor system of the statocyst of Octopus vulgaris. Cell Tissue Res 185: 491–503.

    PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: Evolutionary and functional considerations. In: Atema J. Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 553–593.

    Google Scholar 

  • Corwin JT (1981) Postembryonic production and aging of inner ear hair cells in sharks. J Comp Neurol 201: 541–553.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1985) Perpetual production of hair cells and maturational changes in hair cell ultrastructure accompany postembryonic growth in an amphibian ear. Proc Natl Acad Sci USA 82: 3911–3915.

    PubMed  CAS  Google Scholar 

  • Corwin JT (1986) Regeneration and self-repair in hair cell epithelia: Experimental evaluation of capacities and limitations. In: Ruben RW, Van de Water TR, Rubel EW (eds) The Biology of Change in Otolaryngology. New York: Elsevier, pp. 291–304.

    Google Scholar 

  • Crisp M (1971) Structure and abundance of receptors of the unspecialized external epithelium of Nassarius reticulatus (Gastropoda, Prosobranchia). J Mar Biol Assoc UK 51: 865–890.

    Google Scholar 

  • Dechesne CJ, Sans A (1985) Development of vestibular receptor surfaces in human fetuses. Am J Otolaryngol 6: 378–387.

    PubMed  CAS  Google Scholar 

  • Delaveuve B (1974) Mise en évidence d’altérations dans les cellules sensorielles des neuromastes du Xénope aprés section du nerf latéral. Etude ultrastructurale. C R Acad Sci Paris 278: 1063–1066.

    Google Scholar 

  • Delfino G, Brizzi R, Calloni C (1984) Lateral line organs in Salamandrina terdigitata (Lacépède, 1788) (Amphibia: Urodela). Z Mikrosk-Anat Forsch Leipzig 98: 161–183.

    CAS  Google Scholar 

  • Desmadryl G, Raymond J, Sans A (1985) Histogenesis of the vestibular sensory epithelium in organotypic culture of mouse embryo otocysts: A tritiated thymidine autoradiographic study. Int J Dev Neurosci 3: 549–557.

    Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38: 51–105.

    PubMed  CAS  Google Scholar 

  • Dilly PN (1972) The structure of the tentacles of Rhabdopleura compacta (Hemichordata) with special reference to neurociliary control. Z Zellforsch 129: 20–39.

    PubMed  CAS  Google Scholar 

  • Dogiel AS (1903) Periphere Nervensystem des Amphioxus (Branchiostoma lanceolatum). Anat Hefte 21: 145–213.

    Google Scholar 

  • Ehlers U, Ehlers B (1977) Monociliary receptors in interstitial Proseriata and Neorhabdocoela (Turbellaria Neoophora). Zoomorphology 86: 197–222.

    Google Scholar 

  • Ekström von Lubitz DKJ (1981) Ultrastructure of the lateral-line sense organs of the ratfish, Chimaera monstrosa. Cell Tissue Res 215: 651–665.

    PubMed  Google Scholar 

  • Emery DG (1975) Ciliated sensory neurons in the lip of the squid Lolliguncula brevis Blainville. Cell Tissue Res 157: 323–329.

    PubMed  CAS  Google Scholar 

  • Endo BY (1980) Ultrastructure of the anterior neurosensory organs of the larvae of the soybean cyst nematode, Heterodera glycines. J Ultrastruct Res 72: 349–366.

    PubMed  CAS  Google Scholar 

  • Favre D, Sans A (1979) Embryonic and postnatal development of afferent innervation in cat vestibular receptros. Acta Otolaryngol 87: 97–107.

    PubMed  CAS  Google Scholar 

  • Fernholm B (1985) The lateral line system of cyclostomes. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary Biology of Primitive Fishes. New York: Plenum, pp. 113–122.

    Google Scholar 

  • Fink DJ (1974) Morphogenesis of synaptic endings of colossal fibers in the chick vestibular epithelium. Anat Rec 178: 354–355.

    Google Scholar 

  • Fisk A (1957) Experiments on the development of the acoustico-facialis complex and associated structures in the lamprey Lampetra planeri (Bloch). Proc Zool Soc Lond 128: 267–279.

    Google Scholar 

  • Flock Å (1965) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol (Suppl) 199: 1–90.

    Google Scholar 

  • Flock Å (1971) Sensory transduction in hair cells. In: Lowenstein WR (ed) Handbook of Sensory Physiology, Vol. I: Principles of Receptor Physiology. New York: Springer-Verlag, pp. 396–441.

    Google Scholar 

  • Flock Å (1986) Mechanical properties of hair cells. In: Flock Å, Wersäll J (eds) Cellular Mechanisms in Hearing. New York: Elsevier, p. 80.

    Google Scholar 

  • Flock Å, Jørgensen JM (1974) The ultrastructure of lateral line sense organs in the juvenile salamander Ambystoma mexicanum. Cell Tissue Res 152: 283–292.

    PubMed  CAS  Google Scholar 

  • Flock Å, Flock B, Jørgensen JM (1988) The development of lateral line organs in the regenerating tail of the urodele Ambystoma mexicanum. (Submitted.)

    Google Scholar 

  • Flood PR (1966) A peculiar mode of muscular innervation in amphioxus. Light and electron microscopic studies of the so-called ventral roots. J Comp Neurol 126: 181–217.

    PubMed  CAS  Google Scholar 

  • Fritzsch B, Münz H (1986) Electroreception in amphibians. In: Bullock TH, Heiligenberg W (eds) Electroreception. New York: Wiley, pp. 483–496.

    Google Scholar 

  • Fritzsch B, Wahnschaffe U (1983) The electroreceptive ampullary organs of urodeles. Cell Tissue Res 229: 483–503.

    PubMed  CAS  Google Scholar 

  • Fuchs S (1895) Uber die Funktion der unter der Haut liegenden Kanalsysteme bei den Selachiern. Pflugers Arch Ges Phys 59: 454–478.

    Google Scholar 

  • Giannessi F, Pera L (1986) The ultrastructure of the paratympanic organ in the fowl (Gallus gallus domesticus). J Anat 147: 191–199.

    PubMed  CAS  Google Scholar 

  • Gilmour THJ (1979) Feeding in pterobranch hemichordates and the evolution of gill slits. Can J Zool 57: 1136–1142.

    Google Scholar 

  • Graziadei PPC (1969) The ultrastructure of vertebrate taste buds. In: Pfaffmann C (ed) Olfaction and Taste. New York: Rockefeller University Press, pp. 315–330.

    Google Scholar 

  • Guthrie DM (1975) The physiology and structure of the nervous system of amphioxus (the lancelet) Branchiostoma lanceolatum Pallas. Symp Zool Soc Lond 36: 43–80.

    Google Scholar 

  • Hama K (1965) Some observations on the fine structure of the lateral line organ of the Japanese sea eel Lyncozymba nystromi. J Cell Biol 24: 193–210.

    PubMed  CAS  Google Scholar 

  • Hama K (1978) A study of the fine structure of the pit organ of the common Japanese sea eel Conger myriaster. Cell Tissue Res 189: 375–388.

    PubMed  CAS  Google Scholar 

  • Hama K, Yamada Y (1977) Fine structure of the ordinary lateral line organ. II. The lateral line canal organ of spotted shark, Mustelus manzo. Cell Tissue Res 176: 23–36.

    PubMed  CAS  Google Scholar 

  • Hetherington TE, Bemis WE (1979) Morphological evidence of an electroreceptive function of the rostral organ of Latimeria chalumnae. Am Zool 19: 986.

    Google Scholar 

  • Hetherington TE, Wake MH (1979) The lateral line system in larval Ichthyophis (Amphibia: Gymnophiona). Zoomorphology 93: 209–225.

    Google Scholar 

  • Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54: 370–384.

    PubMed  CAS  Google Scholar 

  • Holmgren N (1942) General morphology of the lateral sensory line system of the head in fish. K Svenska Vet-Ak Hdl 20: 3–46.

    Google Scholar 

  • Horridge GA (1965) Non-motile sensory cilia and neuromuscular junctions in a ctenophore independent effector organ. Proc R Soc Lond B 162: 333–350.

    Google Scholar 

  • Horridge GA (1969) Statocysts of medusae and evolution of stereocilia. Tissue Cell 1: 341–353.

    PubMed  CAS  Google Scholar 

  • Hudspeth AD (1983) Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system. Annu Rev Neurosci 6: 187–215.

    PubMed  CAS  Google Scholar 

  • Istenic L, Bulog B (1984) Some evidence for the ampullary organs in the European cave salamander Proteus anguinus (Urodela, Amphibia). Cell Tissue Res 235: 393–402.

    PubMed  CAS  Google Scholar 

  • Jande SS (1966) Fine structure of lateral-line organs of frog tadpoles. J Ultrastruct Res 15: 496–509.

    PubMed  CAS  Google Scholar 

  • Johnson SE (1917) Structure and development of the sense organs of the lateral canal system of selachians (Mustelus canis and Squalus acanthias). J Comp Neurol 28: 1–74.

    Google Scholar 

  • Johnston JB (1905) The cranial nerve components of Petromyzon. Morph Jahrb 34: 149–203.

    Google Scholar 

  • Jørgensen JM (1980) The morphology of the Lorenzinian ampullae of the sturgeon Acipenser ruthenus (Pisces: Chondrostei). Acta Zool (Stockh) 61: 87–92.

    Google Scholar 

  • Jørgensen JM (1981) On a possible hair cell turn-over in the inner ear of the caecilian Ichthyophis glutinosus (Amphibia: Gymnophiona). Acta Zool (Stockh) 62: 171–186.

    Google Scholar 

  • Jørgensen JM (1982) Fine structure of the ampullary organs of the bichir Polypterus senegalus Cuvier, 1829 (Pisces: Brachiopterygii) with some notes on the phylogenetic development of electroreceptors. Acta Zool (Stockh) 63: 211–217.

    Google Scholar 

  • Jørgensen JM (1984a) On the morphology of the electroreceptors of the Australian and one African lungfish species. Vidensk Meddr Dansk Naturh Foren 145: 77–85.

    Google Scholar 

  • Jørgensen JM (1984b) Fine structure of the paratympanic organ in the avian middle ear. Acta Zool (Stockh) 65: 89–94.

    Google Scholar 

  • Jørgensen JM (1985) On the fine structure of lateral-line canal organs of the herring (Clupea harengus). J Mar Biol Assoc UK 65: 751–758.

    Google Scholar 

  • Jørgensen JM, Bullock TH (1987) Organization of the ampullary organs of the African knife fish Xenomystus nigri (Teleostei: Notopteridae). J Neurocytol 16: 311–315.

    PubMed  Google Scholar 

  • Jørgensen JM, Flock Å (1973) The ultrastructure of lateral line sense organs in the adult salamander Ambystoma mexicanum. J Neurocytol 2: 133–142.

    PubMed  Google Scholar 

  • Jørgensen JM, Mathiesen C (1988) The avian inner ear: Continuous production of hair cells in vestibular sensory organs, but not the auditory papilla. Naturwissenschaften 75: 319–320.

    PubMed  Google Scholar 

  • Jørgensen JM, Flock Å, Wersäll J (1972) The Lorenzinian ampullae of Polyodon spathula. Z Zellforsch 130: 363–377.

    Google Scholar 

  • Kalmijn A (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed) Handbook of Sensory Physiology, Vol. III/3: Electroreceptors and Other Specialized Receptors in Lower Vertebrates. New York: Springer-Verlag, pp. 147–200.

    Google Scholar 

  • Kalmijn A (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Katsuki Y, Mizuhira V, Yoshino S (1952) On the endorgan of the acousticolateralis system of fish. Jpn J Physiol 2: 93–102.

    Google Scholar 

  • Kingsbury BF (1895) The lateral line system of sense organs in some American Amphibia, and comparison with the dipnoans. Trans Am Microsc Soc 17: 115–154.

    Google Scholar 

  • Køie M (1973) The host-parasite interface and associated structure of the cercaria and adult Neophasia lageniformis (Lebour, 1910). Ophelia 12: 205–219.

    Google Scholar 

  • Lane EB, Whitear M (1982) Sensory structures at the surface of fish skin. II. Lateralis system. Zool J Linn Soc 76: 19–28.

    Google Scholar 

  • Landacre FL (1910) The cranial ganglia of Ameiurus. J Comp Neurol Psychol 20: 309–411.

    Google Scholar 

  • Langerhans P (1876) Zur Anatomie des Amphioxus lanceolatus. Arch Mikrosk Anat 12: 290–348.

    Google Scholar 

  • Lee AB (1891) On a little-known sense-organ in Salpa. J Microsc Sci 32: 89–97.

    Google Scholar 

  • Lissmann HW, Mullinger AM (1968) Organization of ampullary electric receptors in Gymnotidae (Pisces). Proc R Soc Lond B 169: 345–378.

    PubMed  CAS  Google Scholar 

  • Lowenstein O, Thornhill RA (1970) The labyrinth of Myxine: Anatomy, ultrastructure and electrophysiology. Proc Soc Lond B 176: 21–42.

    Google Scholar 

  • Lowenstein O, Obsorne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey (.Lampetra fluviatilis). Proc R Soc Lond B 170: 113–134.

    PubMed  CAS  Google Scholar 

  • Lyons KM (1973) Collar cells in planula and adult tentacle ectoderm of the solitary coral Balanophyllia regia (Anthozoa Eupsammiidae). Z. Zellforsch 145: 57–74.

    CAS  Google Scholar 

  • Mackie GO, Bone Q (1976) Skin impulses and locomotion in an ascidian tadpole. J Mar Biol Assoc UK 56: 751–768.

    CAS  Google Scholar 

  • Marshall NJ (1986) Structure and general distribution of free neuromasts in the black goby, Gobius niger. J Mar Biol Assoc UK 66: 323–333.

    Google Scholar 

  • Marshall WS, Nishioka RS (1980) Relation of mitochondria-rich chloride cells to active chloride transport in the skin of a marine teleost. J Exp Zool 214: 147–156.

    PubMed  CAS  Google Scholar 

  • Martin VJ, Thomas MB (1980) Nerve elements in the planula of the hydrozoan Pennaria tiarella. J Morhopol 166: 27–36.

    Google Scholar 

  • Mbiene J-P, Sans A (1986) Differentiation and maturation of the sensory hair bundles in the fetal and postnatal vestibular receptors of the mouse: A scanning electron microscope study. J Comp Neurol 254: 271–278.

    PubMed  CAS  Google Scholar 

  • Mbiene J-P, Favre D, Sans A (1984) The pattern of ciliary development in fetal mouse vestibular receptors. Anat Ambryol 170: 229–238.

    CAS  Google Scholar 

  • Meredith GE, Roberts BL (1987) Distribution and morphological characteristics of efferent neurons innervating end organs in the ear and lateral line of the European eel. J Comp Neurol 265: 494–506.

    PubMed  CAS  Google Scholar 

  • Millar RH (1953) Ciona. LMBC Mem Typ Br Mar PI Anim 35: 1–123.

    Google Scholar 

  • Mullinger AM (1964) The fine structure of ampullary electric receptors in Amiurus. Proc R Soc Lond B 160: 345–359.

    PubMed  CAS  Google Scholar 

  • Mullinger AM (1969) The organization of ampullary sense organs in the electric fish, Gymnarchus niloticus. Tissue Cell 1: 31–52.

    PubMed  CAS  Google Scholar 

  • Murakami A, Eckert R (1972) Cilia: Activation coupled to mechanical stimulation by calcium influx. Science 175: 1375–1377.

    PubMed  CAS  Google Scholar 

  • Murray RG (1969) Cell types in rabbit taste buds. In: Pfaffmann C (ed) Olfaction and Taste. New York: Rockefeller University Press, pp. 331–344.

    Google Scholar 

  • Murray RW (1955) The lateralis organs and their innervation in Xenopus laevis. Q J Microsc Sci 96: 351–361.

    Google Scholar 

  • Münz H (1979) Morphology and innervation of the lateral line system in Sarotherodon niloticus (L.) (Cichlidae, Teleostei). Zoomorphology 93: 73–86.

    Google Scholar 

  • Neugebauer DC, Thurm U (1985) Interconnections between the stereovilli of the fish inner ear. Cell Tissue Res 240: 449–453.

    Google Scholar 

  • Nickel E, Fuchs S (1974) Organization and ultrastructure of mechanoreceptors (Savi vesicles) in the elasmobranch Torpedo. J Neurocytol 3: 161–177.

    Google Scholar 

  • Nørrevang A (1964) Choanocytes in the skin of Harrimannia kupfferi (Enteropneusta). Nature 204: 398–399.

    PubMed  Google Scholar 

  • Norris HW, Hughes SP (1920) The spiracular sense-organ in elasmobranchs, ganoids and dipnoans. Anat Rec 18: 205–209.

    Google Scholar 

  • Northcutt RG (1980a) Central auditory pathways in anamniote vertebrates. In: Popper AN, Ray RR (eds) Comparative Studies of Hearing in vertebrates. New York: Springer-Verlag, pp. 79–118.

    Google Scholar 

  • Northcutt RG (1980b) Anatomical evidence of electroreception in the coelacanth (Latimeria chalumnae). Zbl Vet Med C Anat Histol Embryol 9: 289–295.

    CAS  Google Scholar 

  • Northcutt RG (1986a) Evolution of the octavolateralis system: Evaluation and heuristic value of phylogenetic hypotheses. In: Ruben RW, Van de Vater TR, Rubel EW (eds) The Biology of Change in Otolaryngology. New York: Elsevier, pp. 3–14.

    Google Scholar 

  • Northcutt RG (1986b) Electroreception in non-teleost bony fishes. In: Bullock TH, Heiligenberg W (eds) Electroreception. New York: Wiley, pp. 257–285.

    Google Scholar 

  • Omarkhan M (1948) The lateral sensory canals of larval Notopterus. Proc Zool Soc Lond 118: 938–972.

    Google Scholar 

  • Phillips CE, Friesen WO (1982) Ultrastructure of the water-movement-sensitive sensilla in the medicinal leech. J Neurobiol 13: 473–486.

    PubMed  CAS  Google Scholar 

  • Reese TS, Brightman MW (1970) Olfactory surface and central olfactory connexions in some vertebrates. In: Wolstenholme GEW, Knight J (eds) Taste and Smell in Vertebrates. London: Churchill, pp. 115–143.

    Google Scholar 

  • Reisinger E (1969) Ultrastrukturforschung und Evolution. Ber Phys Med Ges Würzburg NF 77: 5–47.

    Google Scholar 

  • Roberts BL, Ryan KP (1971) The fine structure of the lateral-line sense organs of dogfish. Proc R Soc Lond B 179: 157–169.

    Google Scholar 

  • Ronan MC, Bodznick D (1986) End buds: Non-ampullary electroreceptors in adult lampreys. J Comp Physiol A 158: 9–15.

    PubMed  CAS  Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse: A radioautographic study of terminal mitoses. Acta Otolaryngol (Suppl) 220: 1–44.

    Google Scholar 

  • Russell IJ (1976) Amphibian lateral line receptors. In: Llinas R, Precht W (eds) Frog Neurobiology. New York: Springer, pp. 513–550.

    Google Scholar 

  • Saita A, Castellani LC, Tripepi S (1978) The integument of Glossobalanus minutus Kowalevsky (Enteropneusta Ptycoderidae). Ultrastructural analysis. Mon Zool Ital (NS) 12: 155–179.

    Google Scholar 

  • Santer RM, Laverack MS (1971) Sensory innervation of the tentacles of the polychaete Sabella pavonia. Z Zellforsch 122: 160–171.

    PubMed  CAS  Google Scholar 

  • Sato A, Kawakami I (1976) The fine structure of the lateral-line organ of larvae of the newt, Triturus pyrrhogaster. Annotness Zool Jap 49: 131–141.

    Google Scholar 

  • Satô M (1956) Studies on the pit-organs of fishes. IV. The distribution, histological structure and development of the small pit-organs. Ann Zool J 29: 207–212.

    Google Scholar 

  • Scheich H, Langner G, Tidemann C, Coles RB, Guppy A (1986) Electroreception and electrolocation in platypus. Nature 319: 401–402.

    PubMed  CAS  Google Scholar 

  • Schmidt M, Gnatzy W (1984) Are the funnel-canal organs the “campaniform sensilla” of the shore crab, Carcinus maenas (Decapoda, Crustacea)? II. Ultrastructure. Cell Tissue Res 327: 81–93.

    Google Scholar 

  • Schulte E, Riehl R (1977) Elektronenmikroskopische Untersuchungen an den Oralcirren und der Haut von Branchiostoma lanceolatum. Helgolander Wiss Meeresunters 29: 337–357.

    Google Scholar 

  • Shelton PMJ (1971) The structure and function of the lateral line system in larval Xenopus laevis. J Exp Zool 178: 211–232.

    PubMed  CAS  Google Scholar 

  • Sjöstrand FS (1953) The ultrastructure of the inner segments of the retinal rods of the guinea pig eye as revealed by electron microscopy. J Cell Comp Physiol 42: 45–70.

    Google Scholar 

  • Smith CA (1985) Inner ear. In: King AS, McLelland J (eds) Form and Function in Birds III. London: Academic Press, pp.273–310.

    Google Scholar 

  • Spoendlin HH (1965) Ultrastructural studies of the labyrinth in squirrel monkeys. In: The Role of the Vestibular Organs in the Exploration of Space. Washington: NASA, SP-77, pp. 7–22.

    Google Scholar 

  • Srivastava CB, Seal M (1981) Electroreceptors in Indian catfish teleosts. Adv Physiol Sci 31: 1–11.

    Google Scholar 

  • Steinbrecht, RA (1969) Comparative morphology of olfactory receptors. In: Pfaffmann C (ed) Olfaction and Taste. New York: Rockefeller University Press, pp. 3–21.

    Google Scholar 

  • Steven DM (1951) Sensory cells and pigment distribution in the tail of the ammocoete. J Microsc Sci 92: 233–247.

    Google Scholar 

  • Storch V, Moritz K (1971) Zur Feinstrucktur der Sinnesorgane von Lineus ruber O.F. Müller (Nemertini, Heteronemertini). Z Zellforsch 117: 212–225.

    PubMed  CAS  Google Scholar 

  • Szabo T (1968) Analyse morphologique et fonctionelle de l’épithélium d’un m’ecanorécepteur. Actual Neurol 8: 131–147.

    CAS  Google Scholar 

  • Szabo T (1974) Anatomy of the specialized lateral line organs of electroreception. In: Fessard A (ed) Handbook of Sensory Physiology, Vol. III/3: Electroreceptors and Other Specialized Receptors in Lower Vertebrates. New York: Springer-Verlag, pp. 13–58.

    Google Scholar 

  • Szabo T, Kalmijn AJ, Enger PS, Bullock TH (1972) Microampullary organs and a submandibular sense organ in the freshwater ray, Potamotrygon. J Comp Physiol 79: 15–27.

    Google Scholar 

  • Szamier RB, Bennett MVL (1974) Special cutaneous receptor organs of fish. VII. Ampullary organ of mormyrids. J Morphol 143: 365–384.

    PubMed  CAS  Google Scholar 

  • Teeter JH, Szamier RB, Bennett MVL (1980) Ampullary electroreceptors in the sturgeon Scaphirhynchus platorynchus (Rafinesque). J Comp Physiol 138: 213–223.

    Google Scholar 

  • Tester AL, Kendall JI (1969) Morphology of the lateralis canal system in the shark genus Carcharhinus. Pac Sci 23: 1–16.

    Google Scholar 

  • Thornhill RA (1972) The development of the labyrinth of the lamprey (Lampetra fluviatilis Linn. 1758). Proc R Soc Lond B 181: 175–198.

    Google Scholar 

  • Thurm U (1968) Steps in the transducer process of mechanoreceptors. Symp Zool Soc Lond 23: 199–216.

    Google Scholar 

  • Torrence SA, Cloney RA (1982) Nervous system of ascidian larvae: Caudal primary sensory neurons. Zoomorphology 99: 103–115.

    Google Scholar 

  • Torrence SA, Cloney RA (1983) Ascidian larval nervous system: Primary sensory neurons in adhesive papillae. Zoomorphology 102: 111–123.

    Google Scholar 

  • Trujillo-Cenóz O (1961) Electron microscope observations on chemo-and mechanoreceptor cells of fishes. Z Zellforsch 54: 654–676.

    Google Scholar 

  • Vasquez-Nin GH, Sotelo JR (1968) Electron microscope study of the developing nerve terminals in the acoustic organs of the chick embryo. Z Zellforsch 92: 325–338.

    Google Scholar 

  • Vitali G (1912) Di un interessante derivato dell’ectoderma dells prima fessura branchiale nel passero. Un organo nervoso de senso nell’orecchio medio degli uccelli. Anat Anz 40: 631–639.

    Google Scholar 

  • Vollrath L (1981) The pineal organ. In: Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menshcen VI/7. Berlin: Springer-Verlag, 665 pp.

    Google Scholar 

  • Wachtel AW, Szamier RB (1969) Special cutaneous receptor organs of fish. IV. Ampullary organs of the nonelectric catfish, Kryptopterus. J Morphol 128: 291–308.

    PubMed  CAS  Google Scholar 

  • Wahnschaffe U, Fritzsch B, Himstedt W (1985) The fine structure of the lateral-line organs of larval Ichthyophis (Amphibia: Gymnophiona). J Morhpol 186: 369–377.

    Google Scholar 

  • Waltman B (1966) Electrical properties and fine structure of the ampullary canals of Lorenzini. Acta Physiol Scand 66 (Suppl 264): 1–60.

    Google Scholar 

  • Westfall JA (1970) The nematocyte complex in a hydromedusan, Gonionemus vertens. Z Zellforsch 110: 457–470.

    PubMed  CAS  Google Scholar 

  • Wever EG (1976) Origin and evolution of the ear of vertebrates. In: Masterton RB, Bitterman ME, Campbell CBG, Hotton N (eds) Evolution of Brain and Behavior in Vertebrates. Hillsdale, NJ: Lawrence Erlbaum, pp. 89–106.

    Google Scholar 

  • Whitear M, Lane EB (1983) Multivillous cells: Epidermal sensory cells of unknown function in lamprey skin. J Zool (Lond) 210: 259–272.

    Google Scholar 

  • Whitfield PJ, Emson RH (1983) Presumptive ciliated receptor associated with the fibrillar glands of the spines of the echinoderm Amphipholis squamata. Cell Tissue Res 232:609–624.

    PubMed  CAS  Google Scholar 

  • Wilson RA (1970) Fine structure of the nervous system and specialized nerve endings in the miracidium of Fasciola hepatica. Parasitology 60: 399–410.

    PubMed  CAS  Google Scholar 

  • Wolff HF (1973) Multi-directional sensitivity of statocyst receptor cells of the opisthobranch gastropod Aplysia limacina. Mar Behav Physiol 1: 361–373.

    Google Scholar 

  • Yamada Y (1973) Fine structure of the ordinary lateral line organ. I. The neuromast of lamprey, Entosphenus japonicus J Ultrastruct Res 43: 1–17.

    PubMed  CAS  Google Scholar 

  • Yamada Y, Hama K (1972) Fine structure of the lateral-line organ of the common eel, Anguilla japonica. Z Zellforsch 124: 454–464.

    PubMed  CAS  Google Scholar 

  • Yntema CL (1937) An experimental study of the origin of the cells which constitute the VIIth and VIIIth cranial ganglia and nerves in the embryo of Amblystoma punctatum. J Exp Zool 75: 75–101.

    Google Scholar 

  • Yntema CL (1944) Experiments on the origin of the sensory ganglia of the facial nerve in the chick. J Comp Neurol 81: 147–167.

    Google Scholar 

  • Young JZ (1935) The photoreceptors of lampreys. I. Light-sensitive fibers in the lateral line nerves. J Exp Biol 612: 229–238.

    Google Scholar 

  • Zylstra U (1972) Distribution and ultrastructure of epidermal sensory cells in the freshwater snails Lymnaea stagnalis and Biomphalaria pfeifferi. Neth J Zool 22: 283–298.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Jørgensen, J.M. (1989). Evolution of Octavolateralis Sensory Cells. In: Coombs, S., Görner, P., Münz, H. (eds) The Mechanosensory Lateral Line. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3560-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3560-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8157-3

  • Online ISBN: 978-1-4612-3560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics