Skip to main content

Hydrodynamic Receptor Systems in Invertebrates

  • Conference paper
The Mechanosensory Lateral Line

Abstract

Water currents are among the most basic events in the environment for almost all aquatic invertebrates. Since these animals are predominantly active at night or have no or only poorly developed eyes to localize a moving prey, predator, or conspecific, water currents–with or without chemical signals–are probably the most important source of information about events in their environment. Thus, in aquatic invertebrates one should expect a widespread occurrence of receptor systems that are sensitive to some kind of water movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold JM, Williams-Arnold LD (1980) Development of the ciliature pattern on the embryo of the squid Loligo pealei: A scanning electron microscope study. Biol Bull 159: 102–116.

    Google Scholar 

  • Auerbach B, Budelmann BU (1986) Evidence for acetylcholine as a neurotransmitter in the statocyst of Octopus vulgaris. Cell Tissue Res 243: 429–436.

    CAS  Google Scholar 

  • Ball EE, Cowan AN (1977) Ultrastructure of the antennal sensilla of Acetes (Crustacea, Decapoda, Natantia, Sergestidae). Phil Trans R Soc Lond B Biol Sci 277: 429–456.

    CAS  Google Scholar 

  • Bedini C, Ferrero E, Lanfranchi A (1975) Fine structural observations on the ciliary receptors in the epidermis of three otoplanid species (Turbellaria, Proseriata). Tissue Cell 7: 253–266.

    PubMed  CAS  Google Scholar 

  • Bender M, Gnatzy W, Tautz J (1984) The antennal feathered hairs in the crayfish: A noninnervated stimulus transmitting system. J Comp Physiol A 154: 45–47.

    Google Scholar 

  • Bergeijk WA van (1964) Directional and nondirectional hearing in fish. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford, U.K.: Pergamon Press, pp. 281–299.

    Google Scholar 

  • Bleckmann H (1985) Perception of water surface waves: How surface waves are used for prey identification, prey localization, and intraspecific communication. In: Ottoson D (ed) Progress in Sensory Physiology, Vol. 5. New York: Springer-Verlag, pp. 147–166.

    Google Scholar 

  • Blinn DW, Wagner VT, Grim JN (1986) Surface sensilla on the predaceous fresh-water leech Erpobdella montezuma: Possible importance in feeding. Trans Am Microsc Soc 105: 21–30.

    Google Scholar 

  • Bone Q (1961) The organization of the atrial nervous system of amphioxus (Branchiostoma lanceolatum (Pallas). Phil Trans R Soc Lond B Biol Sci 243: 241–269.

    Google Scholar 

  • Bone Q, Best ACG (1978) Ciliated sensory cells in amphioxus (Branchiostoma). J Mar Biol Assoc UK 58: 479–486.

    Google Scholar 

  • Bone Q, Pulsford A (1978) The arrangement of ciliated sensory cells in Spadella (Chaetognatha). J Mar Biol Assoc UK 58: 565–570.

    Google Scholar 

  • Bone Q, Ryan KP (1978) Cupular sense organs in Ciona (Tunicata: Ascidiacea). J Zool Lond 186: 417–429.

    Google Scholar 

  • Bone Q, Ryan KP (1979) The Langerhans receptor of Oikopleura (Tunicata, Larvacea). J Mar Biol Assoc UK 59: 69–75.

    Google Scholar 

  • Budelmann BU (1977) Structure and function of the angular acceleration receptor systems in the statocysts of cephalopods. Symp Zool Soc Lond 38: 309–324.

    Google Scholar 

  • Budelmann BU (1988) Morphological diversity of equilibrium receptor systems in aquatic invertebrates. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 757–782.

    Google Scholar 

  • Budelmann BU, Bleckmann H (1988) A lateral line analogue in cephalopods: Water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J Comp Physiol A 164: 1–5.

    Google Scholar 

  • Budelmann BU, Bonn U (1982) Histochemical evidence for catecholamines as neurotransmitters in the statocyst of Octopus vulgaris. Cell Tissue Res 227: 475–483.

    PubMed  CAS  Google Scholar 

  • Budelmann BU, Sachse M, Staudigl M (1987) The angular acceleration receptor system of the statocyst of Octopus vulgaris: Morphometry, ultrastructure, and neuronal and synaptic organization. Phil Trans R Soc Lond B Biol Sci 315: 305–344.

    Google Scholar 

  • Bush BMH, Laverack MS (1982) Mechanoreception. In: Atwood HL, Sandeman DC (eds) The Biology of Crustacea, Vol. 3. Neurobiology: Structure and Function. New York: Academic Press, pp. 399–468.

    Google Scholar 

  • Cobb JLS, Moore A (1986) Comparative studies on receptor structure in the brittle star Ophiura ophiura. J Neurocytol 15: 97–108.

    PubMed  CAS  Google Scholar 

  • Comis SD, Pickles JO, Osborne MP (1985) Osmium tetroxide postfixation in relation to the crosslinkage and spatial organization of stereocilia in the guinea-pig cochlea. J Neurocytol 14: 113–130.

    PubMed  CAS  Google Scholar 

  • Creutzberg F (1975) Orientation in space: Animals. Invertebrates. In: Kinne O (ed) Marine Ecology, Vol. 2. Physiological Mechanisms, Part 2. London: John Wiley, pp. 555–656.

    Google Scholar 

  • Crisp M (1981) Epithelial sensory structures of trochids. J Mar Biol Assoc UK 61: 95–106.

    Google Scholar 

  • Crouau Y (1985) Étude du comportement rhĂ©otaxique d’un mysidacĂ© cavernicole. Crustaceana 50: 7–10.

    Google Scholar 

  • Crouau Y (1986) Antennular mechanosensitivity in a cavernicolous mysid crustacean. J Crustacean Biol 6: 158–165.

    Google Scholar 

  • Daly JM (1973) The ability to locate a source of vibrations as a prey-capture mechanism in Harmothoe imbricata (Annelida, Polychaeta). Mar Behav Physiol 1: 305–322.

    Google Scholar 

  • Denton EJ, Gray J (1985) Lateral-line-like antennae of certain of the Penaeidea (Crustacea, Decapoda, Natantia). Proc R Soc Lond B 226: 249–261.

    Google Scholar 

  • Derby CD (1982) Structure and function of cuticular sensilla of the lobster Homarus americanus. J Crustacean Biol 2: 1–21.

    Google Scholar 

  • Derosa YS, Friesen WO (1981) Morphology of leech sensilla: Observations with the scanning electron microscope. Biol Bull 160: 383–393.

    Google Scholar 

  • Dijkgraaf S (1963) Versuche ĂĽber Schallwahrnehmung bei Tintenfischen. Naturwissenschaften 50: 50.

    Google Scholar 

  • Ehlers U, Ehlers B (1977) Monociliary receptors in interstitial Proseriata and Neorhabdocoela (Turbellaria, Neoophora). Zoomorphologie 86: 197–222.

    Google Scholar 

  • Ernstson S, Smith CA (1986) Stereo-kinociliar bonds in mammalian vestibular organs. Acta Otolaryngol (Stockh) 101: 395–402.

    CAS  Google Scholar 

  • Farnesi RM, Marinelli M, Tei S, Vagnetti D (1982) Ultrastructural aspects of mechanoand chemoreceptors in Branchiobdella pentodonta (Annelida, Oligochaeta). J Morphol 173: 237–245.

    Google Scholar 

  • Feigenbaum DL (1978) Hair-fan patterns in the Chaetognatha. Can J Zool 56: 536–546.

    Google Scholar 

  • Feigenbaum D, Reeve MR (1977) Prey detection in the Chaetognatha: Response to a vibrating probe and experimental determination of attack distance in large aquaria. Limnol Oceanogr 22: 1052–1058.

    Google Scholar 

  • Foxton P (1969) The morphology of the antennal flagellum of certain of the Penaeidea (Decapoda, Natantia). Crustaceana 16: 33–42.

    Google Scholar 

  • Friesen WO (1981) Physiology of water motion detection in the medicinal leech. J Exp Biol 92: 255–275.

    PubMed  CAS  Google Scholar 

  • Frings H (1964) Problems and prospects in research on marine invertebrate sound production and reception. In: Tavolga WN (ed) Marine Bio-Acoustics. Oxford, U.K.: Pergamon Press, pp. 155–173.

    Google Scholar 

  • Frings H, Frings M (1967) Underwater sound fields and behavior of marine invertebrates. In: Tavolga WN (ed) Marine Bio-Acoustics, Vol. 2. Oxford, U.K.: Pergamon Press, pp. 261–282.

    Google Scholar 

  • Giguere LA, Dill LM (1979) The predatory response of Chaoborus larvae to acoustic stimuli, and the acoustic characteristics of their prey. Z Tierpsychol 50: 113–123.

    Google Scholar 

  • Graefe G (1964) Zur Anemonen-Fisch Symbiose, nach Freilanduntersuchungen bei Eilat/Rotes Meer. Z Tierpsychol 21: 468–485.

    Google Scholar 

  • Guthrie DM (1975) The physiology and structure of the nervous system of amphioxus (the lancelet) Branchiostoma lanceolatum (Pallas). Symp Zool Soc Lond 36: 43–80.

    Google Scholar 

  • Hanlon RT, Budelmann BU (1987) Why cephalopods are probably not “deaf.” Am Nat 129: 312–317.

    Google Scholar 

  • Hartman HB, Austin WD (1972) Proprioceptor organs in the antennae of decapod crustacea. J Comp Physiol 81: 187–202.

    Google Scholar 

  • Haszprunar G (1985) The fine structure of the abdominal organs of Pteriomorpha (Mollusca, Bivalvia). J Moll Stud 51: 315–319.

    Google Scholar 

  • Hernandez-Nicaise ML (1974) Ultrastructural evidence for a sensory-motor neuron in Ctenophora. Tissue Cell 6: 43–47.

    PubMed  CAS  Google Scholar 

  • Horridge GA (1965) Non-motile sensory cilia and neuromuscular junctions in a ctenophore independent effector organ. Proc R Soc Lond B 162: 333–350.

    Google Scholar 

  • Horridge GA (1966) Some recently discovered underwater vibration receptors in invertebrates. In: Barnes H (ed) Some Contemporary Studies in Marine Science. London: Allen and Unwin, pp. 395–405.

    Google Scholar 

  • Horridge GA, Boulton PS (1967) Prey detection by Chaetognatha via a vibration sense. Proc R Soc Lond B 168: 413–419.

    Google Scholar 

  • Hudspeth AJ (1983) Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system. Annu Rev Neurosci 6: 187–215.

    PubMed  CAS  Google Scholar 

  • Hulet WH (1982) Commentary on the international symposium on functional morphology of cephalopods. Malacologia 23: 203–208.

    Google Scholar 

  • Josephson RK (1961) The response of a hydroid to weak water-borne disturbances. J Exp Biol 38: 17–27.

    Google Scholar 

  • Jouin C, Tchernigovtzeff C, Baucher MF, Toulmond A (1985) Fine structure of probable mechano-and chemoreceptors in the caudal epidermis of the lugworm Arenicola marina (Annelida, Polychaeta). Zoomorphology 105: 76–82.

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Kolle-Kralik U, Ruff PW (1967) Vibrotaxis von Amoeba proteus (Pallas) im Vergleich mit der Zilienschlagfrequenz der Beutetiere. Protistologica 3: 319–323.

    Google Scholar 

  • Laverack MS (1962a) Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). I. Hair-peg organs as water current receptors. Comp Biochem Physiol 5: 319–325.

    Google Scholar 

  • Laverack MS (1962b) Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). II. Hair-fan organs as pressure receptors. Comp Biochem Physiol 6: 137–145.

    Google Scholar 

  • Laverack MS (1963) Responses of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea). III. Activity invoked in sense organs of the carapace. Comp Biochem Physiol 10: 261–272.

    PubMed  CAS  Google Scholar 

  • Laverack MS (1964) The antennular sense organs of Panulirus argus. Comp Biochem Physiol 13: 301–321.

    PubMed  CAS  Google Scholar 

  • Laverack MS (1968) On the receptors of marine invertebrates. Oceanogr Mar Biol Annu Rev 6: 249–324.

    Google Scholar 

  • Laverack MS (1976) External proprioceptors. In: Mill PJ (ed) Structure and Function of Proprioceptors in the Invertebrates. London: Chapman and Hall, pp. 1–63.

    Google Scholar 

  • Lyons KM (1973) Collar cells in planula and adult tentacle ectoderm of the solitary coral Balanophyllia regia (Anthozoa, Eupsammiidae). Z Zellforsch Mikrosk Anat 145: 57–74.

    PubMed  CAS  Google Scholar 

  • Maniwa Y (1976) Attraction of bony fish, squid and crab by sound. In: Schuijf A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 271–283.

    Google Scholar 

  • Mariscal RN (1974) Scanning electron microscopy of the sensory surface of the tentacles of sea anemones and corals. Z Zellforsch Mikrosk Anat 147: 149–156.

    PubMed  CAS  Google Scholar 

  • Markl H (1973) Leistungen des Vibrationssinnes bei wirbellosen Tieren. Fortschr Zool 21: 100–120.

    PubMed  CAS  Google Scholar 

  • Markl H (1978) Adaptive radiation of mechanoreceptors. In: Ali MA (ed) Sensory Ecology. Review and Perspectives. New York: Plenum, pp. 319–344.

    Google Scholar 

  • Masters WM, Aicher B, Tautz J, Markl H (1982) A new type of water vibration receptor on the crayfish antenna. J Comp Physiol A 149: 409–422.

    Google Scholar 

  • Maturana HR, Sperling S (1963) Unidirectional response to angular acceleration recorded from the middle cristal nerve in the statocyst of Octopus vulgaris. Nature 197: 815–816.

    Google Scholar 

  • Mellon D (1963) Electrical responses from dually innervated tactile receptors on the thorax of the crayfish. J Exp Biol 40: 137–148.

    Google Scholar 

  • Moore A, Cobb JLS (1986) Neurophysiological studies on the detection of mechanical stimuli in Ophiura ophiura. J Exp Mar Biol Ecol 104: 125–141.

    Google Scholar 

  • Naef A (1928) Die Cephalopoden (Embryologie). Fauna Flora Golf Neapel 35: 1–357.

    Google Scholar 

  • Neugebauer DC, Thurm U (1984) Chemical dissection of stereovilli from fish inner ear reveals differences from intestinal microvilli. J Neurocytol 13: 797–808.

    PubMed  CAS  Google Scholar 

  • Neugebauer DC, Thurm U (1985) Interconnections between the stereovilli of the fish inner ear. Cell Tissue Res 240: 449–453.

    Google Scholar 

  • Newbury TK (1972) Vibration perception by Chaetognaths. Nature 236: 459–460.

    Google Scholar 

  • Offutt GC (1970) Acoustic stimulus perception by the American lobster, Homarus americanus (Decapoda). Experientia 26: 1276–1278.

    PubMed  CAS  Google Scholar 

  • Pariselle A, Matricon-Gondran M (1985) A new type of ciliated receptor in the cercariae of Nicolla gallica (Trematoda). Z Parasitenkd 71: 353–364.

    Google Scholar 

  • Passano LM, Pant in CFA (1955) Mechanical stimulation in the sea-anemone Calliactis parasitica. Proc R Soc Lond B 143: 226–238.

    Google Scholar 

  • Peteya DJ (1975) The ciliary-cone sensory cell of anemones and cerianthids. Tissue Cell 7: 243–252.

    PubMed  CAS  Google Scholar 

  • Phillips BF, Macmillan DL (1987) Antennal receptors in puerulus and postpuerulus stages of the rock lobster Panulirus cygnus (Decapoda: Palinuridae) and their potential role in puerulus navigation. J Crustacean Biol 7: 122–135.

    Google Scholar 

  • Phillips CE, Friesen WO (1982) Ultrastructure of the water-movement-sensitive sensilla in the medicinal leech. J Neurobiol 13: 473–486.

    PubMed  CAS  Google Scholar 

  • Reisinger E (1969) Ultrastrukturforschung und Evolution. Ber Physik Med Ges WĂĽrzburg NF 77: 5–47.

    Google Scholar 

  • Rossi-Durand C, Vedel JP (1982) Antennal proprioception in the rock lobster Palinurus vulgaris: Anatomy and physiology of a bi-articular chordotonal organ. J Comp Physiol A 145: 505–516.

    Google Scholar 

  • Santer RM, Laverack MS (1971) Sensory innervation of the tentacles of the polychaete, Sabella pavonina. Z Zelforsch Mikrosk Anat 122: 160–171.

    CAS  Google Scholar 

  • Schaeffer AA (1916) On the feeding habits of ameoba. J Exp Zool 20: 529–584.

    Google Scholar 

  • Schöne H, Steinbrecht RA (1968) Fine structure of statocyst receptor of Astacus fluviatilis. Nature 220: 184–186.

    PubMed  Google Scholar 

  • Solon MH, Cobb JS (1980) The external morphology and distribution of cuticular hair organs on the claws of the American lobster, Homarus americanus (Milne-Edwards). J Exp Mar Biol Ecol 48: 205–215.

    Google Scholar 

  • Stephens PR, Young JZ (1976) The statocyst of Vampyroteuthis infemalis (Mollusca: Cephalopoda). J Zool Lond 180: 565–588.

    Google Scholar 

  • Stephens PR, Young JZ (1982) The statocyst of the squid Loligo. J Zool Lond 197: 241–266.

    Google Scholar 

  • Strickler JR, Bal AK (1973) Setae of the first antennae of the copepod Cyclops scutifer (Sars): Their structure and importance. Proc Natl Acad Sci USA 70: 2656–2659.

    PubMed  CAS  Google Scholar 

  • Sundermann G (1983) The fine structure of epidermal lines on arms and head of postembryonic Sepia officinalis and Loligo vulgaris (Mollusca, Cephalopoda). Cell Tissue Res 232: 669–677.

    PubMed  CAS  Google Scholar 

  • Sundermann-Meister G (1978) Ein neuer Typ von Cilienzellen in der Haut von spätembryonalen und juvenilen Loligo vulgaris (Mollusca, Cephalopoda). Zool Jahrb Abt Anat Ontog Tiere 99: 493–499.

    Google Scholar 

  • Swift MC, Fedorenko AY (1975) Some aspects of prey capture by Chaoborus larvae. Limnol Oceanogr 20: 418–425.

    Google Scholar 

  • Tardent P, Schmid V (1972) Ultrastructure of mechanoreceptors of the polyp Coryne pintneri (Hydrozoa, Athecata). Exp Cell Res 72: 265–275.

    PubMed  CAS  Google Scholar 

  • Tautz J (1979) Reception of particle oscillation in a medium -an unorthodox sensory capacity. Naturwissenschaften 66: 452–461.

    Google Scholar 

  • Tautz J, Sandeman DC (1980) The detection of waterborne vibration by sensory hairs on the chelae of the crayfish. J Exp Biol 88: 351–356.

    Google Scholar 

  • Tautz J, Masters WM, Aicher B, Markl H (1981) A new type of water vibration receptor on the crayfish antenna. I. Sensory Physiology. J Comp Physiol 144: 533–541.

    Google Scholar 

  • Taylor RC (1967a) The anatomy and adequate stimulation of a chordotonal organ in the antennae of a hermit crab. Comp Biochem Physiol 20: 709–717.

    Google Scholar 

  • Taylor RC (1967b) Functional properties of the chordotonal organ in the antennal flagellum of a hermit crab. Comp Biochem Physiol 20: 719–729.

    Google Scholar 

  • Tazaki K (1977) Nervous responses from mechanosensory hairs on the antennal flagellum in the lobster, Homarus gammarus (L.). Mar Behav Physiol 5: 1–18.

    Google Scholar 

  • Tazaki K, Ohnishi M (1974) Responses from tactile receptors in the antenna of the spiny lobster Panulirus japonicus. Comp Biochem Physiol 47A: 1323–1327.

    Google Scholar 

  • Vedel JP (1985) Cuticular mechanoreception in the antennal flagellum of the rock lobster Palinurus vulgaris. Comp Biochem Physiol 80A: 151–158.

    Google Scholar 

  • Vedel JP, Clarac F (1976) Hydrodynamic sensitivity by cuticular organs in the rock lobster Palinurus vulgaris. Morphological and physiological aspects. Mar Behav Physiol 3: 235–251.

    Google Scholar 

  • Wiese K (1976) Mechanoreceptors for near-field water displacements in crayfish. J Neurophysiol 39: 816–833.

    PubMed  CAS  Google Scholar 

  • Williamson R (1985) Efferent influences on the afferent activity from the Octopus angular acceleration receptor system. J Exp Biol 119: 251–264.

    Google Scholar 

  • Williamson R (1986) Efferent activity in the Octopus statocyst nerves. J Comp Physiol A 158: 125–132.

    Google Scholar 

  • Williamson R, Budelmann BU (1985) The response of the Octopus angular acceleration receptor system to sinusoidal stimulation. J Comp Physiol A 156: 403–412.

    Google Scholar 

  • Young JZ (1960) The statocysts of Octopus vulgaris. Proc R Soc Lond B 152: 3–29.

    PubMed  CAS  Google Scholar 

  • Young JZ (1984) The statocysts of cranchiid squids (Cephalopoda). J Zool Lond 203: 1–21.

    Google Scholar 

  • Young SR, Dedwylder RD, Friesen WO (1981) Responses of the medicinal leech to water waves. J Comp Physiol 144: 111–116.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Budelmann, BU. (1989). Hydrodynamic Receptor Systems in Invertebrates. In: Coombs, S., Görner, P., Münz, H. (eds) The Mechanosensory Lateral Line. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3560-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3560-6_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8157-3

  • Online ISBN: 978-1-4612-3560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics