Skip to main content

Central Nervous Physiology of the Lateral Line, with Special Reference to Cartilaginous Fishes

  • Conference paper

Abstract

Fishes and aquatic amphibians use the mechanoreceptive lateral line to detect weak water currents (Dijkgraaf 1963; Bleckmann 1986; Kalmijn 1988) and water surface waves (Schwartz 1971; Bleckmann 1988). Electrophysiological studies have shown that the pattern of impulses carried by primary lateral line afferents encodes information about the nature of the peripheral stimulus with respect to duration, amplitude, frequency, and phase (see Münz Chapter 14). If the activity of several neuromasts, which may differ with respect to the alignment of their most sensitive axis, is integrated over time and space, the additional information of stimulus direction and, perhaps, stimulus distance may be obtained. Thus the peripheral lateral line provides the brain with all cues necessary to evaluate a complex wave stimulus with respect to stimulus origin, stimulus duration, and stimulus type.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alnaes E (1973a) Lateral line input to the crista cerebellaris in the eel. Acta Physiol Scand 88: 49–61.

    Article  PubMed  CAS  Google Scholar 

  • Alnaes E (1973b) Unit activity of ganglionic and medullary second order neurones in the eel lateral line system. Acta Physiol Scand 88: 160–174.

    Article  PubMed  CAS  Google Scholar 

  • Andrianov GN, Ilyinsky OB (1973) Some functional properties of central neurons connected with the lateral-line organs of the catfish (Ictalurus nebulosus. J Comp Physiol A 86: 365–376.

    Article  Google Scholar 

  • Aronson LR (1963) The central nervous system of sharks and bony fishes with special reference to sensory and integrative mechanisms. In: Gilbert PW (ed) Sharks and Survival. Boston: Heath, pp. 165–241.

    Google Scholar 

  • Backstrom K (1924) Contribution to the forebrain morphology in selachians. Acta Zool 5: 123–240.

    Article  Google Scholar 

  • Bell CC (1981) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195: 391–414.

    Article  PubMed  CAS  Google Scholar 

  • Bell C, Russell CJ (1978) Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateralis area. J Comp Neurol 182: 367–382.

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H (1986) Role of the lateral line in fish behaviour. In: Pitcher TJ (ed) The Behaviour of Teleost Fishes. London: Croom Helm, pp. 177–202.

    Google Scholar 

  • Bleckmann H (1988) Prey identification and prey localization in surface-feeding fish and fishing spiders. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 619–641.

    Google Scholar 

  • Bleckmann H, Münz H (1988) The physiology of lateral line mechanoreceptors in Xiphister atropurpureus, a teleost with multiple lateral lines (submitted).

    Google Scholar 

  • Bleckmann H, Bullock TH, Jørgensen JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161: 67–84.

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Weiss O, Bullock TH (1989) The physiology of medullary, mesencephalic, diencephalic, and telencephalic lateral line areas in Platyrhinoides triseriata. J Comp Physiol A (in press).

    Google Scholar 

  • Bodznick DA, Northcutt RG (1980) Segregation of electro-and mechanoreceptive inputs to the elasmobranch medulla. Brain Res 195: 313–322.

    Article  PubMed  CAS  Google Scholar 

  • Bodznick DA, Northcutt RG (1984) An electrosensory area in the telencephalon of the little skate, Raja erinacea. Brain Res 298: 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Bonke D, Scheich H, Langner G (1979) Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. I. Tonotopy and functional zones of field L. J Comp Physiol A 132: 243–255.

    Article  Google Scholar 

  • Boord RL, Northcutt RG (1982) Ascending lateral line pathways to the midbrain of the clearnose skate Raja eglanteria. J Comp Neurol 207: 274–282.

    Article  PubMed  CAS  Google Scholar 

  • Braford M, McCormick CA (1979) Some connections of the torus semicircularis in the bowfin, Amia calva: A horseradish peroxidase study. Soc Neurosci Abstr 5: 139.

    Google Scholar 

  • Bullock TH (1979) Processing of ampullary input in the brain: Comparison of sensitivity and evoked responses among elasmobranchs and siluriform fishes. J Physiol (Paris) 75: 297–407.

    Google Scholar 

  • Bullock TH (1986) Interspecific comparison of brainstem auditory evoked potentials and frequency following responses among vertebrate classes. In: Cracco RQ, Bodis-Wollner I (eds) Evoked Potentials. New York: Alan R. Liss, pp. 155–164.

    Google Scholar 

  • Bullock TH, Corwin JT (1979) Acoustic evoked activity in the brain of sharks. J Comp Physiol A 129: 223–234.

    Article  Google Scholar 

  • Caird DM (1978) A simple cerebellar system: The lateral line lobe of the goldfish. J Comp Physiol A 127: 61–74.

    Article  Google Scholar 

  • Callens M, Vandenbusche E, Greenway PH (1967) Convergence of retinal and lateral line stimulation on tectum opticum and cerebellar neurones. Arch Int Physiol Biochem 75: 148–150.

    CAS  Google Scholar 

  • Claas B, Münz H (1981) Projection of lateral line afferents in a teleost’s brain. Neurosci Lett 23: 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Cohen DH, Duff TA, Ebbesson SOE (1973) Electrophysiological identification of a visual area in shark telencephalon. Science 182: 492–494.

    Article  PubMed  CAS  Google Scholar 

  • Corwin JT, Northcutt RG (1982) Auditory centers in the elasmobranch brain: Deoxyglucose localization and evoked potential recording. Brain Res 236: 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38: 51–105.

    Article  PubMed  CAS  Google Scholar 

  • Duff TA, Ebbesson SOE (1973) Electrophysiological identification of a visual area in shark telencephalon. Science 182: 492–494.

    Article  PubMed  Google Scholar 

  • Echteler SM (1985) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol A 156: 267–280.

    Article  Google Scholar 

  • Fiebig E (1988) Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii). A study with WGA-HRP and extracellular granule cell recording. J Comp Neurol 268: 567–583.

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Ellisman MH (1985) Synaptic morphology and differences in sensitivity. Science 228: 197–199.

    Article  PubMed  CAS  Google Scholar 

  • Finger TE (1980) Nonolfactory sensory pathway to the telencephalon in a teleost fish. Science 210: 671–673.

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Bullock TH (1982) Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: Evoked potential evidence. J Neurobiol 13: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Tong SL (1984) Central organization of eighth nerve and mechanosensory lateral line system in the brainstem of ictalurid catfish. J Comp Neurol 229: 129–151.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins AD (1981) The hearing abilities of fish. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fish. New York: Springer, pp. 109–133.

    Google Scholar 

  • Herrick CJ (1897) The cranial nerve components of teleosts. Anat Anz 13: 425–431.

    Google Scholar 

  • Hoagland H (1935) Electrical responses from the lateral line nerves of fishes. V. Responses in the central nervous system. J Gen Physiol 18: 89–91.

    Article  Google Scholar 

  • Kalmijn Ad. J (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 83–130.

    Google Scholar 

  • Kappers CU Ariens, Huber G, Crosby EC (1936) The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. Reprinted 1960. New York: Hafner, pp. 18–45.

    Google Scholar 

  • Knudsen EI (1976) Midbrain responses to electroreceptive input in catfish: Evidence of orientation preferences and somatotopic organization. J Comp Physiol A 106: 51–67.

    Article  Google Scholar 

  • Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173: 417–432.

    Article  PubMed  CAS  Google Scholar 

  • Kotchabhakdi N (1976) Functional organization of the goldfish cerebellum. Information processing of input from peripheral sense organs. J Comp Physiol A 112: 75–93.

    Article  Google Scholar 

  • Lee LT, Bullock TH (1984) Sensory representation in the cerebellum of the catfish. Neuroscience 13: 157–169.

    Article  PubMed  CAS  Google Scholar 

  • Luiten PGM (1981a) Two visual pathways in the telencephalon of the nurse shark (Ginglymostoma cirratum). I. Retinal projections. J Comp Neurol 196: 531–538.

    Article  PubMed  CAS  Google Scholar 

  • Luiten PGM (1981b) Two visual pathways in the telencephalon of the nurse shark (Ginglymostoma cirratum). II. Ascending thalamotelencephalic connections. J Comp Neurol 196: 539–548.

    Article  PubMed  CAS  Google Scholar 

  • Mayser P (1882) Vergleichend anatomische Studien über das Gehirn der Knochenfische mit besonderer Berücksichtigung der Cyprinoiden. Z Wiss Zool 36: 259–364.

    Google Scholar 

  • McCormick CA (1981) Comparative neuroanatomy of the octavolateralis area of fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer, pp. 375–381.

    Google Scholar 

  • McCormick CA, Braford MR (1988) Central connections of the octavolateralis system: Evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga W (eds) Sensory Biology of Aquatic Animals. New York: Springer, pp. 733–756.

    Google Scholar 

  • Meek J (1983) Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res Rev 6: 247–297.

    Article  Google Scholar 

  • Montgomery (1984) Noise cancellation in the electrosensory system of the thornback ray: Common mode rejection of input produced by the animals own ventilatory movement. J Comp Physiol A 155: 103–111.

    Article  Google Scholar 

  • Nederstigt LJA, Schellart NAM (1986) Acousticolateral processing in the torus semicircularis of the trout Salmo gairdneri. Pflügers Arch 406: 151–157.

    Article  PubMed  CAS  Google Scholar 

  • New JG, Northcutt RG (1984) Central projections of the lateral line nerves in the shovelnose sturgeon. J Comp Neurol 225: 129–140.

    Article  PubMed  CAS  Google Scholar 

  • New JG, Bodznick D (1985) Segregation of electroreceptive and mechanoreceptive lateral line afferents in the hindbrain of chondrostean fishes. Brain Res 336: 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Nier K (1976) Cutaneous sensitivity to touch and low-frequency vibration in selachians. J Comp Physiol A 109: 345–355.

    Article  Google Scholar 

  • Northcutt RG (1981) Audition and the central nervous system of fishes. In: Fay RR, Popper A, Tavolga W (eds) Hearing and Sound Communications in Fishes. New York: Springer, pp. 331–355.

    Google Scholar 

  • Paul DH, Roberts BL (1977a) Studies on a primitive cerebellar cortex. II. The projection of the posterior lateral line nerve to the lateral line lobes of the dogfish brain. Proc R Soc Lond B 195: 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Paul DH, Roberts BL (1977b) Studies on a primitive cerebellar cortex. III. The projection of the anterior lateral line nerve to the lateral line lobes of the dogfish brain. Proc R Soc Lond B 195: 479–496.

    Article  PubMed  CAS  Google Scholar 

  • Platt CJ, Bullock TH, Czéh G, Kovačević N, Konjević Dj, Gojković M (1974) Comparison of electroreceptor, mechanoreceptor, and optic evoked potentials in the brain of some rays and sharks. J Comp Physiol A 95: 323–355.

    Article  Google Scholar 

  • Ronan M, Northcutt RG (1987) Primary projections of the lateral line nerves in adult lampreys. Brain Behav Evol 30: 62–81.

    Article  PubMed  CAS  Google Scholar 

  • Russell IJ (1974) Central and peripheral inhibition of lateral line input during the startle response in goldfish. Brain Res 80: 517–522.

    Article  PubMed  CAS  Google Scholar 

  • Russell IJ (1976) Central inhibition of lateral line input in the medulla of the goldfish by neurones which control active body movements. J Comp Physiol A 111: 335–358.

    Article  Google Scholar 

  • Russell IJ, Roberts BL (1972) Inhibition of spontaneous lateral line activity by efferent nerve stimulation. J Exp Biol 57: 77–82.

    Google Scholar 

  • Schellart NAM, Zweijpfenning RCVJ, Nederstigt LJA (1984) Convergence of auditory and lateral line processing in the torus semicircularis of the trout, Salmo gairdneri. Neurosci Lett 42: 39–44.

    Article  Google Scholar 

  • Schwartz E (1971) Die Ortung von Wasserwellen durch Oberflächenfische. Z Vergl Physiol A 74: 64–80.

    Article  Google Scholar 

  • Schweitzer J (1986) Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata): A single unit study. J Comp Physiol A 158: 43–58.

    Article  PubMed  CAS  Google Scholar 

  • Tong SL (1982) The nucleus praeeminentialis: An electro-and mechanoreceptive center in the brainstem of the catfish. J Comp Physiol A 145: 299–303.

    Article  Google Scholar 

  • Tong SL, Bullock TH (1982) The sensory functions of the cerebellum of the thornback ray, Platyrhinoidis triseriata. J Comp Physiol A 148: 399–410.

    Article  Google Scholar 

  • Veselkin VP, Kovačević N (1973) Non-olfactory telencephalic afferent projections in elasmobranch fishes. Zh Evol Biokhim Fiziol 9: 585–592 (in Russian).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Bleckmann, H., Bullock, T.H. (1989). Central Nervous Physiology of the Lateral Line, with Special Reference to Cartilaginous Fishes. In: Coombs, S., Görner, P., Münz, H. (eds) The Mechanosensory Lateral Line. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3560-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3560-6_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8157-3

  • Online ISBN: 978-1-4612-3560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics