Skip to main content

Central Mechanosensory Lateral Line System in Amphibians

  • Conference paper
The Mechanosensory Lateral Line

Abstract

In recent years neurobiological research on the lateral line system has produced an impressive body of knowledge not the least of which is evidenced by the present volume. In this chapter, present data on the central organization of the amphibian lateral line system will be reviewed. Commencing with the central termination of lateral line afferents, it will successively consider higher nuclear levels, taxonomic differences being discussed at each level. Yet, already at the medullary level, comparative neuroanatomical material exists mainly for only urodeles and anurans. As for the third amphibian order, gymnophionans, several studies have dealt with the peripheral lateral line system (Taylor 1970; Hethrington and Wake 1979; Fritzsch et al. 1985; Wahnschaffe et al. 1985). Knowledge about central connections, however, is still limited to a very few data. Furthermore, there are hardly any data on the physiology of the lateral line at the medullary level. Neuroanatomical data on higher projections, except for the projection to the mesencephalon in urodeles and gymnophionans, are available only for anurans. However, far from being complete, they are limited to the mesencephalon and its connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Altmann JS, Dawes EA (1983) A cobalt study of medullary sensory projections from the lateral line nerves, associated cutaneous nerves and the VIIIth nerve in adult Xenopus. J Comp Neurol 213: 310–326.

    Article  Google Scholar 

  • Barry MA (1987) Afferent and efferent connections of the primary octaval nuclei in the clearnose skate, Raja eglanteria. J Comp Neurol 266: 457–477.

    Article  PubMed  CAS  Google Scholar 

  • Bell CC (1981) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195: 391–414.

    Article  PubMed  CAS  Google Scholar 

  • Carr C, Matsubara J (1981) Central projections of the octavolateralis nerve in a gymnotiform fish. Neurosci Abstr 7: 84.

    Google Scholar 

  • Comer C, Grobstein P (1981a) Tactually elicited prey acquisition behavior in the frog, Rana pipiens, and a comparison with visually elicited behavior. J Comp Physiol 142: 141–150.

    Article  Google Scholar 

  • Comer C, Grobstein P (1981b) Involvement of midbrain structures in tactually and visually elicited prey acquisition behavior in the frog, Rana pipiens. J Comp Physiol 142: 151–160.

    Article  Google Scholar 

  • Comer C, Grobstein P (1981c) Organization of sensory inputs to the midbrain of the frog, Rana pipiens. J Comp Physiol 142: 161–168.

    Article  Google Scholar 

  • Denton EJ, Gray JAB, Blaxter JHS (1979) The mechanics of the clupeid acoustico lateralis system: Frequency responses. J Mar Biol Assoc UK 59: 27–47.

    Article  Google Scholar 

  • Dykes RW (1983) Parallel processing of somatosensory information: A theory. Brain Res Rev 6: 47–115.

    Article  Google Scholar 

  • Escher K (1925) Das Verhalten der Seitenlinienorgane der Wirbeltiere und ihrer Nerven beim Uebergang zum Landleben. Acta Zool Bd 6: 307: 414.

    Google Scholar 

  • Feng AS (1986) Afferent and efferent innervation patterns of the cochlear nucleus (dorsal medullary nucleus) of the leopard frog. Brain Res 367: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Flohr H, Bienhold H, Abeln W, Masckovics I (1981) Concepts of vestibular compensation. In: Flohr H, Precht W (eds) Lesion Induced Neuronal Plasticity in Sensorimotor Systems. Berlin: Springer, pp. 153–172.

    Google Scholar 

  • Fritzsch B (1981) The pattern of lateral line afferents in urodeles. Cell Tiss Res 218: 581–594.

    Article  CAS  Google Scholar 

  • Fritzsch B, Nikundiwe AM, Will U (1984) Projection patterns of lateral line afferents in anurans: A comparative HRP study. J Comp Neurol 229: 451–469.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Wahnschaffe U, Crapon de Caprona M-D, Himstedt W (1985) Anatomical evidence for electroreception in larval Ichthyophis kohtaoensis. Naturwissenschaften 72: 102–104.

    Article  Google Scholar 

  • Fritzsch B, Drewes RC, Ruibal R (1987) The retention of the lateral line nucleus in adult anurans. Copeia 1987 1: 127–135.

    Article  Google Scholar 

  • Gomez Segade LA (1980) Morphology and evolution of the acoustic-lateral area in the rhombencephalon of Salamandridae. I. Salamandra salamandra. Trab Inst Cajal Invest Biol Madrid 71: 37–55.

    CAS  Google Scholar 

  • Gomez Segade LA, Carrato Ibanez A (1981) Morphology and evolution of the acousticlateral area in the rhombencephalon of Salamandridae. II. Chioglossa lusitanica. Trab Inst Cajal Invest Biol Madrid 72: 111–119.

    CAS  Google Scholar 

  • Görner P (1973) The importance of the lateral line system for the perception of surface waves in the claw toad, Xenopus laevis D. Experientia 29: 295–296.

    Article  Google Scholar 

  • Görner P (1976) Source localization with the labyrinth and the lateral line in the clawed toad, Xenopus laevis. In: Schuif A, Hawkins AD (eds) Sound Reception in Fish. Amsterdam: Elsevier, pp. 171–183.

    Google Scholar 

  • Herrick CJ (1948) The Brain of the Tiger Salamander. Chicago: University of Chicago Press. 409 pp.

    Google Scholar 

  • Hetherington TE, Wake MH (1979) The lateral line system in larval Ichthyophis (Amphibia: Gymnophiona) Zoomorphologie 93: 209–225.

    Article  Google Scholar 

  • Kingsbury BF (1895) On the brain of Necturus maculatus. J Comp Neurol 5: 139–205.

    Article  Google Scholar 

  • Kreht H (1930) Ueber die Faserzuege im Zentralnervensystem von Salamandra maculosa L. Z Mikrosk Anat Forsch 23: 239–320.

    Google Scholar 

  • Kuhlenbeck H (1967–1978) The Central Nervous System of Vertebrates. Basel: Karger.

    Google Scholar 

  • Larsell O (1967) The Comparative Anatomy and Histology of the Cerebellum from Myxinoids Through Birds. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Lowe DA (1986) Organisation of lateral line and auditory areas in the midbrain of Xenopus laevis. J Comp Neurol 245: 498–513.

    Article  PubMed  CAS  Google Scholar 

  • Lowe DA, Russell IR (1982) The central projections of lateral line and cutaneous sensory fibers (XII and X) in Xenopus laevis. Proc R Soc Lond B 216: 279–297.

    Article  PubMed  CAS  Google Scholar 

  • McCormick CA (1981) Central projections of the lateralis and eighth nerves in the bowfin, Amia calva. J Comp Neurol 197: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • McCormick CA, Braford MR (1987) Central connections of the octavolateralis system: Evolutionary Considerations In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer.

    Google Scholar 

  • McCrea RA, Yoshida K, Berthoz A, Baker R (1980) Eye movement related activity and morphology of second order vestibular neurons terminating in the cat abducens nucleus. Exp Brain Res 40: 468–473.

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE (1984) Peripheral configuration and central projections of the lateral line system in Astronotus ocellatus (Cichlidae): A nonelectroreceptive teleost. J Comp Neurol 228: 342–358.

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE (1985) The distinctive central utricular projections in the herring. Neurosci Lett 55: 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Butler AB (1983) Organization of the eighth nerve afferent projections from individual endorgans of the inner ear in the teleost, Astronotus ocellatus. J Comp Neurol 220: 44–62.

    Article  PubMed  CAS  Google Scholar 

  • Münz H, Claas B, Fritzsch B (1984) Electroreceptive and mechanoreceptive units in the lateral line system of the axolotl Ambystoma mexicanum. J Comp Physiol A 154: 33–44.

    Article  Google Scholar 

  • Northcutt RG (1978a) Primary projections of VIII nerve afferents in a teleost, Gillichthys mirabilis. Anat Rec 193: 638.

    Google Scholar 

  • Northcutt RG (1978b) Brain organization in cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory Biology of Sharks, Skates, and Rays. Arlington, VA: Office of Naval Research, pp. 117–193.

    Google Scholar 

  • Northcutt RG (1980) Central auditory pathways in anamniotic vertebrates. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 79–118.

    Google Scholar 

  • Northcutt RG (1981) Audition and the central nervous system of fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 331–355.

    Google Scholar 

  • Opdam P, Nieuwenhuys R (1976) Topological analysis of the brainstem of the axolotl Ambystoma mexicanum. J Comp Neurol 165: 285–306.

    Article  PubMed  CAS  Google Scholar 

  • Opdam P, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brainstem of the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol 165: 307–332.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew AG (1981) Brainstem afferents to the torus semicircularis of the queensland cane toad (Bufo marinus). J Comp Neurol 202: 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Plassmann W (1980) Central neuronal pathways in the lateral line system of Xenopus laevis. J Comp Physiol 136: 203–213.

    Article  Google Scholar 

  • Powers WT (1973) Feedback: Beyond behaviorism. Science 179: 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The Central Nervous System of Cartilaginous Fishes. Berlin: Springer.

    Google Scholar 

  • Stone J, Dreher B, Leventhal A (1979) Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Res Rev 1: 345–394.

    Article  Google Scholar 

  • Taylor EH (1970) The lateral line sensory system in the caecilian family Ichthyophiidae (Amphibia Gymnophiona). Univ Kansas Sci Bull 48: 861–868.

    Google Scholar 

  • Ten Donkelaar HJ, de Boer van Huizen R, Schouten FTM, Eggen SJH (1981) Cells of origin of pathways descending to the spinal cord in the clawed toad. Neuroscience 6(11): 2297–2312.

    Article  PubMed  Google Scholar 

  • Wahnschaffe U, Fritzsch B, Himstedt W (1985) The fine structure of the lateral line organs of larval Ichthyophis (Amphibia, Gymnophiona). J Morphol 186: 369–377.

    Article  Google Scholar 

  • Wilczynski W (1981) Afferents to the midbrain auditory center in the bullfrog, Rana catesbeiana. J Comp Neurol 198: 421–433.

    Article  PubMed  CAS  Google Scholar 

  • Will U (1986a) Das Seitenliniensystem bei Bombina (Discoglossidae, Anura). Verh Dtsch Zool Ges 79: 302.

    Google Scholar 

  • Will U (1986b) Mauthner neurons survive metamorphosis in anurans. J Comp Neurol 244: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Will U (1988) Organization and projections of the area octavolateralis in amphibians. In: Fritzsch B et al. (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 185–208.

    Google Scholar 

  • Will U, Fritzsch B (1988) The octavus nerve of amphibians. Peripheral and central distribution. In: Fritzsch B et al. (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 159–183.

    Google Scholar 

  • Will U, Luhede G (1984) Organization of sensory input to the torus semicircularis of Xenopus laevis. Verh Dtsch Zool Ges 77: 345.

    Google Scholar 

  • Will U, Luhede G, Görner P (1985a) The octavo-lateralis area in Xenopus laevis. I. The primary afferent projections. Cell Tiss Res 239: 147–161.

    Article  Google Scholar 

  • Will U, Luhede G, Görner P (1985b) The octavo-lateralis area in Xenopus laevis. II. Second order projections and cytoarchitecture. Cell Tiss Res 239: 163–175.

    Article  Google Scholar 

  • Will U, Kortmann H, Flohr H (1988) HRP study on structural changes in the commissural fiber system of Rana temporaria following labyrinthectomy. In: Flohr H (ed) Lesion Induced Neuronal Plasticity. New York: Springer-Verlag, pp. 345–355.

    Google Scholar 

  • Zittlau KE, Claas B, Münz H, Görner P (1985) Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis. Neurosci Lett 60: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Zittlau KE, Claas B, Münz B (1986) Directional sensitivity of lateral line units in the clawed toad, Xenopus laevis Daudin. J Comp Physiol 158: 469–477.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Will, U. (1989). Central Mechanosensory Lateral Line System in Amphibians. In: Coombs, S., Görner, P., Münz, H. (eds) The Mechanosensory Lateral Line. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3560-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3560-6_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8157-3

  • Online ISBN: 978-1-4612-3560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics