Skip to main content

The Role of Terrestrial Microcosms and Mesocosms in Ecotoxicologic Research

  • Chapter
Ecotoxicology: Problems and Approaches

Part of the book series: Springer Advanced Text in Life Sciences ((SATLIFE))

Abstract

Terrestrial microcosm technology is less than two decades old. Much of its efforts is based in plant growth chamber studies, soil column experiments, and environmental process measurements made in the field. Stemming from chemical, toxicological, and physiological studies begun in the latter part of the 19th century and applied widely in the first six decades of this century, microcosm technology has come to depend heavily on advanced analytical techniques, materials science, and sophisticated ecological field investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali S (1978) Degradation and environmental fate of endosulfan isomers and endosulfan sulfate in mouse, insects, and laboratory model ecosystem. Ph. D. Thesis. University of Illinois — Champaign/Urbana. 101 pp. [Diss. Abstr. Int. B 39: 2117 ]

    Google Scholar 

  • Amundson RG (1983) Yield reduction of soybeans due to exposure to sulfur dioxide and nitrogen dioxide in combination. J Environ Qual 12: 454–458

    CAS  Google Scholar 

  • Anderson AC, Abdelghani AA, McDonell D (1979a) Fate of the herbicide MSMA in microcosms. Trace Substances Environ Health 13: 274–284

    CAS  Google Scholar 

  • Anderson RV, Elliot ET, McClellan JF, Coleman DC, Cole CV, Hunt HW (1978) Trophic interactions in soils as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae, and nematodes. Microbiol Ecol 4:381–387

    Google Scholar 

  • Anderson RV, Coleman DC, Cole CV, Elliott ET, McClellan JF (1979b) The use of soil microcosms in evaluating bacteriophage nematode response to other organisms and effects on nutrient cycling. Int J Environ Stud 13: 175–182

    Google Scholar 

  • Anderson TJ, Barrett GW (1982) Effects of dried sewage sludge on meadow vole (Microtus pennsylvanicus) populations in two grassland communities. J Appl Ecol 19: 759–772

    Google Scholar 

  • Arthur MF, Zwick TC, Tolle DA, Van Voris P (1984) Effects of fly ash on microbial carbon dioxide evolution from an agricultural soil. Water Air Soil Pollut 22: 209–216

    Google Scholar 

  • Au LA (1979) Pesticide interactions in the laboratory rice paddy model ecosys-tem. Ph. D. Thesis. University of Illinois — Champaign/Urbana. 156 pp. [Diss. Abstr. Int. B 40:3567-3568]

    Google Scholar 

  • Ausmus BS, Dodson GJ, Jackson DR (1978) Behavior of heavy metals in forest microcosms: III. Effects on litter-soil carbon metabolism. Water Air Soil Pollut 10: 19–26

    CAS  Google Scholar 

  • Ausmus BS, Jackson DR, Van Voris P (1979) The accuracy of screening techniques. In: Witt JM, Gillett JW, Wyatt CJ (eds) Terrestrial Microcosms and Environmental Chemistry, Proceedings of the Colloquia held at Corvallis, OR, June, 1977. NSF/RA 79-0026. Washington DC: National Science Foundation, pp. 123–130

    Google Scholar 

  • Bengtsson G (1985) Microcosm for groundwater research. In: Ward CH, Giger W, McCarty PL (eds) Ground Water Quality. New York: John Wiley & Sons, pp. 330–341

    Google Scholar 

  • Booth GM, Yu C-C, Hansen DJ (1973) Fate, metabolism, and toxicity of 3- isopropyl-lH-2,l,3-benzothiadiazin-4(3H)-l-2,2-dioxide in a model ecosystem. J Environ Qual 2: 408–411

    CAS  Google Scholar 

  • Caballa SH, Patterson M, Kapoor IP (1979) A terrestrial-aquatic model ecosystem for evaluating the environmental fate of drugs and related residues in animal excreta. In: Khan MAQ, Lech JJ, Menn JJ (eds) Pesticide and Xeno- biotic Metabolism in Aquatic Organisms. ACS Symposium Series 99: 183–194

    Google Scholar 

  • Cairns J Jr (1983) Are single species toxicity tests alone adequate for estimating environmental hazard? Hydrobiology 100: 47–57

    CAS  Google Scholar 

  • Cairns J Jr, Alexander M, Cummins KW, Edmondson WT, Goldman R, Harte J, Isensee AR, Levin R, McCormick JF, Peterle TJ, Zar JH (1981) Testing Effects of Chemicals on Ecosystems. Washington DC: National Academy Press, 103 pp.

    Google Scholar 

  • Carsell RF, Smith CM, Mulkey LA, Dean JD, Jowise P (1984) Users Manual for Pesticide Root Zone Model (PRZM), Release 1. US/EPA 600/3-84-109. Washington, DC: US Environmental Protection Agency

    Google Scholar 

  • Coats JR, Metealf RL, Kapoor IP (1974) Metabolism of the methoxychlor isostere, dianisyl neopentane, in mouse, insects, and a model ecosystem. Pestic Biochem Physiol 4: 201–211

    CAS  Google Scholar 

  • Coats JR, Metcalf RL, Lu P-Y, Brown DD, Williams JF, Hansen LG (1976) Model ecosystem evaluation of the environmental impacts of the veterinary drugs phenothiazine, sulfamethazine, Clopidol, and diethylstilbestrol. Environ Health Perspect 18: 167–179

    Google Scholar 

  • Coats JR, Metcalf RL, Kapoor IP, Chio L-C, Boyle PA (1979) Physical-chemical and biological degradation studies of DDT analogs with altered aliphatic moieties. J Agric Food Chem 27: 1016–1022

    PubMed  CAS  Google Scholar 

  • Cole CV, Elliot ET, Hunt HW, Coleman DC (1978) Trophic interactions in soils as they affect energy and nutrient dynamics. V. Phosphorus transformations. Microbiol Ecol 4: 381-387

    Google Scholar 

  • Cole LK, Metcalf RL, Sanborn JR (1976a) Environmental fate of insecticides in terrestrial model ecosystems. Int J Environ Stud 10: 7–14

    CAS  Google Scholar 

  • Cole LK, Sanborn JR, Metcalf RL (1976b) Inhibition of corn growth by aldrin and the insecticide’s fate in the soil, air, and wildlife of a terrestrial model ecosystem. Environ Entomol 5: 583–589

    CAS  Google Scholar 

  • Coleman DC, Anderson RV, Cole CV, Elliot ET, Woods L, Campion MK (1978) Trophic interactions in soils as they affect energy and nutrient dynamics. IV. Flows of metabolic and biomass carbon. Microbiol Ecol 4: 373-380

    Google Scholar 

  • Davis JM, Riodan AJ, Lawson RE Jr (1983) Wind tunnel study of the flow field within and around open-top chambers used for air pollution studies. Boundary- Layer Meteorol 25: 193–214

    Google Scholar 

  • Donigian AS Jr, Beyerlein DC, Davis HH, Crawford MH (1977) Agricultural Runoff Management (ARM) Model, Version II Refinement and Testing. EPA- 600/2-77-098. Athens, GA: US Environmental Protection Agency, Environmental Research Laboratory, 293 pp

    Google Scholar 

  • Draggan S (1976) The microcosm as a tool for estimation of environmental transport of toxic materials. Int J Environ Stud 10: 1–7

    Google Scholar 

  • Draggan S (1979) Effects of substrate type and arsenic dosage level on arsenic behavior in grassland microcosms. Part I: Preliminary results on 74As as transport. In: Witt JM, Gillett JW, Wyatt CJ (eds) Terrestrial Microcosms and Environmental Chemistry. Proceedings of the Colloquia held at Corvallis, OR, June, 1977. NSF/RA 79-0026 Washington DC: National Science Foundation, pp. 102–110

    Google Scholar 

  • Duchelle SF, Skelly JM, Chevone BI (1982) Oxidant effects on forest tree seed-ling growth in the Appalachian mountains. Water Air Soil Pollut 18: 363–373

    CAS  Google Scholar 

  • Enfield CG, Carsel RF, Cohen SZ, Phan T, Walters DM (1982) Approximation of pollutant transport to ground water. Ground Water 20: 711–722

    CAS  Google Scholar 

  • Francis BM, Hansen LG, Fukuto TR, Lu P-Y, Metealf RL (1980) Ecotoxicology of phenylphosphonothioates. Environ Health Perspect 36: 187–195

    PubMed  CAS  Google Scholar 

  • Giesy JP Jr (ed) (1980) Microcosms in Ecological Research. Proceedings of the Symposium in Augusta, GA, August, 1979. U.S. Department of Energy Symposium Series No. 52. (CONF-781101). Springfield, VA: U.S. Technical Information Service, 1034 pp.

    Google Scholar 

  • Gile JD (1983) 2,4-D: Its distribution and effects in a rye grass (Lolium perenne) ecosystem. J Environ Qual 12: 406–412

    CAS  Google Scholar 

  • Gile JD, Gillett JW (1979) The fate of 14C-dieldrin in a simulated terrestrial ecosystem. Arch Environ Contam Toxicol 8: 107–124

    PubMed  CAS  Google Scholar 

  • Gile JD, Collins JC, Gillett JW (1979) The Soil Core Microcosm—A Potential Screening Tool EPA-600/3-79-089. Corvallis, OR: U.S. Environmental Protection Agency, 40 pp.

    Google Scholar 

  • Gile JD, Gillett JW, Collins JC (1980a) Fate of selected herbicides in a terrestrial laboratory microcosm. Environ Sei Technol 14: 1124–1128

    CAS  Google Scholar 

  • Gile JD, Collins JC, Gillett JW (1980b) Fate of selected fungicides in a terrestrial laboratory ecosystem. J Agric Food Chem 27: 1159–1164

    Google Scholar 

  • Gile JD, Gillett JW (1981) Transport and fate of organophosphate insecticides in a terrestrial laboratory ecosystem. J Agric Food Chem 29: 616–621

    PubMed  CAS  Google Scholar 

  • Gile JD, Collins JC, Gillett JW (1982) Fate and impact of selected wood preservatives in a terrestrial model ecosystem. J Agric Food Chem 30: 295–301

    CAS  Google Scholar 

  • Gillett JW (1978) Terrestrial laboratory microcosms: Relationship to water resources. In: Klingman P (ed) Toxic Materials in the Aquatic Environment WR- 024-078. Water Resources Research Institute, Corvallis, OR: Oregon State University, pp. 17–42

    Google Scholar 

  • Gillett JW (1981) Model ecosystems in fate and movement of toxicants. In: Beroza M (ed) Test Protocols for Environmental Fate and Movement of Toxicants. Proceedings of the Symposium, 94th annual meeting in Arlington, VA. Arlington VA: Association of Official Analytical Chemists, pp. 214–232

    Google Scholar 

  • Gillett JW (1983) A comprehensive pre-biologic screen for ecotoxicologic effects. Environ Toxicol Chem 2: 463–476

    CAS  Google Scholar 

  • Gillett JW (1985) Annex A: The role of microcosms in specimen banking and monitoring, In: Lewis RA, Gillett J, Van Loon JC, Hushon JM, Ludke JL, Watson AP (eds) “Richtlinien für den Einsatz von Umweltprobenbanken in der Bundesrepublik Deutschland auf ökologischer Grundlage. Umweltforschungs¬plan des Bundesministers des Innern.” [Guidelines for the Role of Environmen¬tal Specimen Banking in the Federal Republic of Germany on an Ecologic Basis. Environmental Research Plan of the Ministry of the Interior.], Saarbrücken, W. Germany: Universität des Saarlandes, pp. A-l-A-9

    Google Scholar 

  • Gillett JW (ed) (1986) Prospects for Physical and Biological Containment of Genetically Engineered Organisms. Proceedings of the Shackelton Point Work-shop on Biotechnology Impact Assessment, October, 1985, Bridgeport, NY. ERC-114. Ecosystems Research Center, Cornell University, Ithaca, NY. 137 pp.

    Google Scholar 

  • Gillett JW, Gile JD (1976) Pesticide fate in terrestrial laboratory ecosystems. Int J Environ Stud 10: 15–22

    Google Scholar 

  • Gillett JW, Witt JM (1979) Terrestrial Microcosms. Proceedings of the workshops at Otter Rock and Portland, OR, June and December, 1977. NSF/RA-790034. Washington DC: National Science Foundation, 34 pp.

    Google Scholar 

  • Gillett JW, Russell LK, Gile JD (1983) Predator-prey (vole-cricket) interactions: The effects of wood preservatives. Environ Toxicol Chem 2: 83-93

    Google Scholar 

  • Gillett JW, Levin SA, Harwell M, Alexander M, Andow DA, Stern AM (eds) (1985) Potential Impacts of Environmental Release of Biotechnology Products: Assessment, Regulation, and Research Needs. ERC-075. Ecosystems Research Center, Cornell University, Ithaca, NY. 241 pp. See also, (1986) Environ. Manage. 10: 433–563.

    Google Scholar 

  • Goodman D (1982) The Limits of Microcosms: Problems in the Interpretation of Toxicity Results from Laboratory Multispecies Systems. ERC-13. Ecosystems Research Center, Cornell University, Ithaca, NY. 15 pp.

    Google Scholar 

  • Goodman ED (1982) Modeling the effects of pesticides on populations of soil/litter invertebrates in an orchard ecosystem. Environ Toxicol Chem 1: 45–60

    CAS  Google Scholar 

  • Goodman ED, Jenkins JJ, Zabik MJ (1983) A model for azinophosmethyl attenuation and movement in a Michigan orchard ecosystem. II. Parameterization of the field-based model. Arch Environ Contam Toxicol 12: 111-119

    Google Scholar 

  • Hammonds A (ed) (1981a) Methods for Ecological Toxicology, ORNL-5708 (EPA 560/11-80-026) Oak Ridge, TN: Oak Ridge National Laboratory, 307 pp.

    Google Scholar 

  • Hammonds A (ed) (1981b) Ecological Test Systems (Proceedings of a series of workshops, Oak Ridge, TN) ORNL-5709 (EPA 560/6-81-004) Oak Ridge, TN: Oak Ridge National Laboratory, 179 pp.

    Google Scholar 

  • Harris WF (ed) (1980) Microcosms as Potential Screening Tools for Evaluating Transport and Effects of Toxic Substances, Environmental Sciences Div. Publication No. 1506 (EPA 600/3-80-042). Oak Ridge, TN: Oak Ridge National Laboratory, 379 pp.

    Google Scholar 

  • Heck WW, Cure WW, Rawlings JO, Zaragoza LJ, Heagle AS, Heggestad HE, Kohut RJ, Kress LW, Temple PJ (1984a). Assessing impacts of ozone on agri-cultural crops: I. Overview. J Air Pollut Control Assoc 34: 729-735

    Google Scholar 

  • Heck WW, Cure WW, Rawlings JO, Zaragoza LJ, Heagle AS, Heggestad HE, Kohut RJ, Kress LW, Temple PJ (1984b) Assessing impacts of ozone on agricultural crops. II. Crop yield functions and alternative exposure statistics. J Air Pollut Control Assoc 34: 810-817

    Google Scholar 

  • Heggestad HE, Gish TJ, Lee EH, Bennett JH, Douglass LW (1985) Interaction of soil moisture stress and ambient ozone on growth and yields of soybeans. Phytopathology 75: 472–477

    CAS  Google Scholar 

  • Hirwe AS, Metealf RL, Lu P-Y, Chio LC (1975) Comparative metabolism of 1,1-bis-(p-chlorophenyl)-2-nitropropane ( Prolan) in mouse, insects and a model ecosystem. Pestic Biochem Physiol 5: 65-72

    Google Scholar 

  • Hogsett WE, Tingey DT, Holman SR (1985) A programmable exposure control system for determination of the effects of pollutant exposure regimes on plant growth. Atmos Environ 19: 1135–1145

    CAS  Google Scholar 

  • Howe GJ (1977) The effects of various insecticides applied to a terrestrial model ecosystem or fed in the diet on the serum Cholinesterase level and reproductive potential of Coturnix quail. Ph.D. Thesis. University of Manitoba. [Diss. Abstr. Int. B 38:4785]

    Google Scholar 

  • Huckabee J (1983) Evaluation of tests to predict chemical injury to ecosystems: Microcosms. Palo Alto, CA: Electric Power Research Institute, 43 pp. [draft ms]

    Google Scholar 

  • Jackson DR, Washburne CD, Ausmus BS (1977) Loss of calcium and nitrate nitrogen from terrestrial microcosms as in indicator of soil pollution. Water Air Soil Pollut 8: 279–284

    CAS  Google Scholar 

  • Jenkins JJ, Zabik MJ, Kon R, Goodman ED (1983) A model for azinophos-methyl attenuation and movement in a Michigan orchard ecosystem. I. Development and presentation of the experimental data base. Arch Environ Contam Toxicol 12: 99-110

    Google Scholar 

  • Johnson RF, Barrett GW (1975) Effects of diethylstilbestrol on feral house mouse (Mus musculus L.) population dynamics under experimental field conditions. J Appl Ecol 12: 741–747

    CAS  Google Scholar 

  • Kapoor IP, Metealf RL, Nystrom RF, Sangha GK (1970) Comparative metabolism of methoxychlor, methiochlor, and DDT in the mouse, insects, and in a model ecosystem. J Agric Food Chem 18: 1145–1152

    PubMed  CAS  Google Scholar 

  • Kapoor IP, Metcalf RL, Hirwe AS, Lu P-Y, Coats JR, Nystrom RF (1972) Comparative metabolism of DDT, methoxychlor, and ethoxychlor in mouse, insects and in a model ecosystem. J Agric Food Chem 20:1-6 Kapoor IP, Metcalf RL, Hirwe AS, Coats JR, Khalsa MS (1973) Structure-activity correlations of biodegradability of DDT analogs. J Agric Food Chem 21:310–315

    Google Scholar 

  • Kapoor IP, Metcalf RL, Hirwe AS, Coats JR,Khalsa MS (1973)Structure-activity correlations of biodegradability of DDT analogs. J Argic Food Chem 21:310–315

    Google Scholar 

  • Kazano H, Asakawa M, Tomizawa C (1975) Fate of 3,5-xylyl methylcarbamate insecticide (XMC) in a model ecosystem. Appl Ent Zool 10:108-115

    CAS  Google Scholar 

  • Kenaga EE (1980) Correlation of bioconcentration factors of chemicals in aquatic and terrestrial organisms with their physical and chemical properties. Environ Sei Technol 14: 553–556

    CAS  Google Scholar 

  • Kickert RN (1984) Sensitivity of agricultural ecological system models and implications for vulnerability to toxic chemicals. Environ Toxicol Chem 3: 309–324

    CAS  Google Scholar 

  • Koeppe MK, Lichtenstein EP (1982) Effects of percolating water, captafol, and S- ethyl-N,N-dipropylthiocarbamate on the movement and metabolism of soil- applied carbon-14-labeled carbofuran in an agromicrocosm. J Agric Food Chem 30: 116–121

    CAS  Google Scholar 

  • Koeppe MK, Lichtenstein EP (1984) Effects of organic fertilizers on the fate of 14C carbofuran in an agro-microcosm under soil run-off conditions. J Econ Entomol 77: 1116–1122

    CAS  Google Scholar 

  • Lauenroth WK, Preston EM (1984) Effects ofS02 on a Grassland: a Case Study in the Northern Great Plains of the United States. EPA-600/3-84-107. Corvallis, OR: U.S. Environmental Protection Agency

    Google Scholar 

  • Laurence JA, Maclean DC, Mandl RH, Schneider RE, Hansen KS (1982) Field tests of a linear gradient system for exposure of row crops to S02 and HF. Water Air Soil Pollut 17: 399–407

    CAS  Google Scholar 

  • Lee JJ (1985) Effects of simulated sulfuric acid rain on the chemistry of a sulfate-adsorbing forest soil. EPA-600/J-85-015. Corvallis, OR: U.S. Environmental Protection Agency

    Google Scholar 

  • Lee JJ, Weber DE (1980) Effects of sulfuric acid rain on two model hardwood forests: throughfall, litter leachate, and soil solution. EPA-600/3-80-014. Cor-vallis, OR: U.S. Environmental Protection Agency

    Google Scholar 

  • Lee JJ, Weber DE (1983) Effects of sulfuric acid rain on decomposition rate and chemical element content of hardwood leaf litter. EPA-600/J-83-038. Corvallis, OR: U.S. Environmental Protection Agency

    Google Scholar 

  • Leo AJ, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71: 525–616

    CAS  Google Scholar 

  • Lewis E, Brennan E (1977) A disparity in the ozone response of bean plants grown in a greenhouse, growth chamber or open-top chamber. J Air Pollut Control Assoc 27: 889–891

    CAS  Google Scholar 

  • Liang TT, Lichtenstein EP (1979). Effects of cover crops on the movement and fate of soil-applied [14C]-fonofos in a soil-plant-water microcosm. J Econ Entomol 73: 204–210

    Google Scholar 

  • Lichtenstein EP (1980) Fate and behavior of pesticides in a compartmentalized microcosm, In: Giesy JP Jr (ed) Microcosms in Ecological Research. (Augusta, GA, Nov. 8-10, 1978). DOE Symposium Series, Vol. 52. Department of Energy CONF-781101. Springfield, VA: National Technical Information Service, pp. 954–970

    Google Scholar 

  • Lichtenstein EP, Fuhremann TW, Schulz KR (1974) Translocation and metabolism of [14C]phorate as affected by percolating water in a model soil-plant ecosystem. J Agric Food Chem 22: 991–996

    PubMed  CAS  Google Scholar 

  • Lichtenstein EP, Liang TT, Fuhremann TW (1978) A compartmentalized microcosm for studying the fate of chemicals in the environment. J Agric Food Chem 26: 948–953

    CAS  Google Scholar 

  • Lichtenstein EP, Schulz KR, Liang TT (1977) Fate of fresh and aged soil residues of the insecticide [14C]-N-2596 in a soil-corn-water ecosystem. J Econ Entomol 70: 169–175

    Google Scholar 

  • Lighthart B (1979) Enrichment of cadmium-mediated antibiotic-resistant bacteria in a Douglas fir (Pseudotsuga menziesii) litter microcosm. Appl Environ Microbiol 37: 859–861

    PubMed  CAS  Google Scholar 

  • Lighthart B, Baham J, Volk VV (1982) Microbial respiration and chemical speciation in metal-amended soils. J Environ Microbiol 46: 1073–1079

    Google Scholar 

  • Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed ecosystem. Ecol Monogr 40: 23–47

    Google Scholar 

  • Lindstrom FT, Piver WT (1984) A Mathematical Model of the Vertical Transport and Fate of Toxic Chemicals in a Terrestrial Microcosm System. Tech. Rep. No. 51, Dept. of Mathematics. Corvallis, OR: Oregon State University

    Google Scholar 

  • Lindstrom FT, Piver WT (1986) Vertical-horizontal transport and fate of low water solubility chemicals in unsaturated soil. J Hydrol 86: 93–131

    Google Scholar 

  • Lindstrom FT, McCoy EL, McFarlane JC, Boersma L (1986) Uptake of organic chemicals by plants: A theoretical model. Corvallis OR: U.S. Environmental Protection Agency, 54 pp. [draft]

    Google Scholar 

  • Lu P-Y, Metealf RL, Furman R, Vogel R, Hassett J (1975) Model ecosystem studies of lead and cadmium and of urban sewage sludge containing these elements. J Environ Qual 4: 505–509

    CAS  Google Scholar 

  • Lu P-Y, Metealf RL, Plummer N, Mandel D (1977) The environmental fate of three carcinogens: benzo(a)pyrene, benzidine, and vinyl chloride evaluated in laboratory model ecosystems. Arch Environ Contam Toxicol 6:129- 142

    Google Scholar 

  • Lu P-Y, Metcalf RL, Carlson EM (1978) Environmental fate of five radiolabeled coal conversion by-products evaluated in a laboratory model ecosystem. Environ Health Perspect 24: 201–208

    PubMed  CAS  Google Scholar 

  • Malanchuk JL, Mueller CA, Pomerantz SM (1980) Microcosm evaluation of the agricultural potential of fly ash amended soils, In: Giesy JP Jr (ed) Microcosms in Ecological Research. (Augusta, GA, Nov. 8-10, 1978). DOE Symposium Series, Vol. 52. Department of Energy CONF-781101. Springfield, VA: Na¬tional Technical Information Service, pp. 1034–1049

    Google Scholar 

  • Malanchuk JL, Joyce K (1983) Effects of 2,4-D on nitrogen fixation and carbon dioxide evolution in a soil microcosm. Water Air Soil Pollut 20:181- 190

    Google Scholar 

  • Malanchuk JL, Kollig HP (1985). Integrated use of physical and mathematical models to evaluate ecological effects. Water Air Soil Pollut 24: 267–282

    CAS  Google Scholar 

  • Male LM, Van Sickle J, Wilhour R (1978) Time Series Experiments for Studying Plant Growth Response to Pollution. EPA 600/3-78-038. Corvallis, OR: US Environmental Protection Agency Mandl RH, Weinstein L, Dean M, Wheeler M (1980) Response of sweet corn to HF and S02 under field conditions. Environ Exp Bot 20: 359–365

    Google Scholar 

  • Mandl RH, Weinstein L, Dean M, Wheeler M (1980) Response of sweet corn to HF and S02 under field conditions. Environ Exp Bot 20: 359–365

    Google Scholar 

  • Matsumura F (1980) Use of a microcosm approach to assess pesticide biodegrada- bility. In: Biotransformation and Fate of Chemical in the Aquatic Environment. Proceedings of workshop, Aug. 14-18, 1979. Washington DC: American Society of Microbiology, pp. 126-135.

    Google Scholar 

  • McFarlane JC (1978) Light. In: Langhans RW (ed) A Growth Chamber Manual. Ithaca, NY: Cornell University Press, pp. 1–44

    Google Scholar 

  • McFarlane JC, Cross A, Frank C, Rogers RD (1981) Atmospheric benzene depletion by soil microorganisms. Environ Monit Assess 1: 75–81

    CAS  Google Scholar 

  • McFarlane JC, Nolt C, Wickliff C, Pfleeger T, Shimabuku R, McDowell M (1987) The uptake, distribution, and metabolism of four organic chemicals by soybean plants and barley roots. Environ Toxicol Chem 6: 847–856

    CAS  Google Scholar 

  • Metcalf RL (1976)Model ecosystem studies of bioconcentration and biodégradation of pesticides, In: Khan MAQ (ed) Pesticides in Aquatic Environments. New York: Plenum Press, pp. 127-144

    Google Scholar 

  • Metcalf RL (1977) Model ecosystem approach to insecticide degradation. Ann Rev Entomol 22: 241–261

    CAS  Google Scholar 

  • Metcalf RL (1979) Model ecosystems for environmental studies of estrogens. In: McLachlan JA (ed) Estrogens in the Environment. New York: Elsevier North Holland, Inc, pp. 203–211

    Google Scholar 

  • Metcalf RL, Sangha GK, Kapoor IP (1971) Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ Sei Technol 5: 709–713

    CAS  Google Scholar 

  • Metcalf RL, Booth GM, Schuth CK, Hansen DJ, Lu P-Y (1973) Uptake and fate of di-2-ethylhexyl phthalate in aquatic organisms and in a model ecosystem. Environ Health Perspect 4: 27–34

    PubMed  CAS  Google Scholar 

  • Metcalf RL, Kapoor IP, Lu P-Y, Schuth CK, Sherman P (1973). Model ecosystem studies of the environmental fate of six organochlorine pesticides. Environ Health Perspect 4: 35–44

    PubMed  CAS  Google Scholar 

  • Metecalf RL, Sanborn JR (1975) Pesticides and environmental quality in Illinois. Bull 111 Nat Hist Surv 31: 381–436

    Google Scholar 

  • Metecalf RL, Sanborn JR, Lu P-Y, Nye D (1975). Laboratory model ecosystem studies of the degradation and fate of radiolabeled tri-, tetra-, and pentachlorobiphenyl compared with DDE. Arch Environ Contam Toxicol 3: 151–165

    Google Scholar 

  • Metcalf RL, Cole LK, Wood SG, Mandel DJ, Milbrath ML (1979) Design and Evaluation of a Terrestrial Model Ecosystem for Evaluation of Substitute Pesticide Chemicals. EPA 600/3-79-004. Corvallis, OR: U.S. Environmental Protection Agency, 200 pp.

    Google Scholar 

  • Mill T, Mabey WR, Bomberger DC, Chou T-W, Hendry DG, Smith JH (1980) Laboratory Protocols for Evaluating the Fate of Organic Chemicals in Air and Water. SRI Project PYU-4396. Palo Alto, CA: SRI International, 329 pp.

    Google Scholar 

  • Mitchell MJ, Parkinson CM, Hamilton WE, Dindal DL (1982) Role of the earth-worm, Eisenia foetida, in affecting organic matter decomposition in microcosms of sludge-amended soil. J Appl Ecol 19: 805–812

    Google Scholar 

  • Mount D, Gillett JW (1982) Impact of pollution on wildlife and habitat resources. In: Mason WT (ed) Research on Fish and Wildlife Habitat, EPA-600/8-82-022. Washington DC: U.S. Environmental Protection Agency, pp. 143–164

    Google Scholar 

  • Nash RG, Beall ML Jr (1980) Distribution of silvex, 2,4-D, and TCDD applied to turf in chambers and field plots. J Agric Food Chem 28: 614–623

    CAS  Google Scholar 

  • Nash RG, Beall ML Jr, Harris WG (1977) Toxaphene and 1,1,1- trichloro-2,2- bis(p-chlorophenyl)-ethane ( DDT) losses from cotton in an agroecosystem chamber. J Agric Food Chem 25: 336-341

    Google Scholar 

  • Nash RG, Beall ML Jr, Kearney PC (1979) A microagroecosystem to monitor environmental fate of pesticides. In: Witt JM, Gillett JW, Wyatt CJ (eds), Terrestrial Microcosms and Environmental Chemistry, (Proceedings of the Col- loquia held at Corvallis, OR, June, 1977 ) NSF/RA 79-0026. Washington DC: National Science Foundation, pp. 86–94

    Google Scholar 

  • Nassos PA, Coats JR, Metcalf RL, Brown DD, Hansen LG (1980) Model ecosystem, toxicity, and uptake evaluation of 75Se-selenite. Bull Environ Contam Toxicol 24: 752–758

    PubMed  CAS  Google Scholar 

  • Neuhold J, Ruggerio L (1976) Ecosystem processes and organic contaminants. NSF/RA 76-0008. Washington DC: National Science Foundation, 44 pp.

    Google Scholar 

  • Odum EP (1971) Fundamentals of Ecology. Philadelphia: W.B. Saunders, 574 pp.

    Google Scholar 

  • Odum HT, Jenkins CF (1970) Metabolism and évapotranspiration of the lower forest in a giant plastic cylinder. In: Odum HT (ed) A Tropical Rain Forest. TID 24270. Washington DC: Div. of Technical Information, US Atomic Energy Commission, pp 165–189

    Google Scholar 

  • Olszyk DM, Tibbits TW, Hertzberg WM (1980) Environment in open-top field chambers utilized for air pollution studies. J Environ Qual 9: 610–615

    Google Scholar 

  • O’Neill RV, Ausmus BS, Jackson DR, Van Hook RI, Van Voris P, Washburne C, Watson AP (1977) Monitoring terrestrial ecosystems by analysis of nutrient export. Water Air Soil Pollut 8: 271–277

    Google Scholar 

  • Patterson MR, Mankin JB, Brooks A A (1974) Overview of a unified transport model. Proc Ann NSF Trace Contam Conf 1: 12–23

    Google Scholar 

  • Perez KT, Morrison GM, Lackie NK, Oviatt CA, Nixon SW, Buckley BA, Heltshe JF (1977)The importance of physical and biological scaling to the experimental simulation of a coastal marine ecosystem. Helgol Wiss Meeresunters 30: 144–162

    Google Scholar 

  • Preston EM, Lee JJ (1981) Design and Performance of a Field Exposure System for Evaluation of the Ecological Effects of SO 2 on Native Grassland. EPA-600/ J-82-221. Corvallis, OR: U.S. Environmental Protection Agency

    Google Scholar 

  • Rees JF, Wilson BH, Wilson JT (1985) Biotransformation of toluene in methanogenic subsurface material. 85th Annual Meeting of the American Society for Microbiology, Las Vegas, NV, Mar. 3-7, 1985. Abstracts Ann Meet Amer Soc Microbiol 85: 258

    Google Scholar 

  • Sanborn JR, Yu C-C (1973) The fate of dieldrin in a model ecosystem. Bull Environ Contam Toxicol 10: 340–346

    PubMed  CAS  Google Scholar 

  • Sanborn JR, Metcalf RL, Bruce WN, Lu P-Y (1976) The fate of chlordane and toxaphene in a terrestrial-aquatic model ecosystem. Environ Entomol 5:533- 538

    Google Scholar 

  • Shirazi MA (1980) Development of scaling criteria for terrestrial microcosms. ISEM Journal 2: 97–116

    Google Scholar 

  • Shirazi MA, Lighthart B, Gillett JW (1984) A method for scaling biological response of soil microcosms. Ecol Model 13: 203–26

    Google Scholar 

  • Snider RM (1979) The effects of azinophos-methyl (GuthionR) on a population Trachelipus rathkei (Isopoda) in a Michigan orchard. Pedobiology 19:99–105

    Google Scholar 

  • Snider RM, Shaddy JW (1980)The ecobiology of Trachelipus rathkei (Isopoda). Pedobiology 20: 394–410

    Google Scholar 

  • Tolle DA, Arthur MF, Van Voris P (1983) Microcosm and field comparison of trace element uptake in crops grown in fly ash amended soil. Sei Total Environ 31: 243–261

    CAS  Google Scholar 

  • Tolle DA, Arthur MF, Chesson J, Van Voris P (1985) Comparison of pots vs. microcosms for predicting agroecosystem effects due to waste amendment. Environ Toxicol Chem 4:501-510

    Google Scholar 

  • Tomizawa C (1980) Biological accumulation of pesticides in an ecosystem — Evaluation of biodegradability and ecological magnification of rice pesticides by a model ecosystem. Japan Agric Research Quart 14: 143–149

    Google Scholar 

  • Tomizawa C, Kazano H (1979) Environmental fate of rice paddy pesticides in amodel ecosystem. J Environ Sei Health B 14: 121–152

    CAS  Google Scholar 

  • Trabalka JR, Garten CT (1982) Development of Predictive Models for Xenobiotic Bioaccumulation in Terrestrial Ecosystems. Environmental Sciences Div. Publication No. 2037 Oak Ridge, TN: Oak Ridge National Laboratory, 256 pp.

    Google Scholar 

  • U.S. Environmental Protection Agency (1978) Proposed guidelines for registration of pesticides in the United States [40 CFR Parts 162, 163, 181]. Federal Reg. 43: 29697–29741

    Google Scholar 

  • Van Voris P, O’Neill RV, Emanuel WR, Shugart HH Jr (1980) Functional complexity and ecosystem stability. Ecology 61: 1352–1360

    Google Scholar 

  • Van Voris P, Arthur MF, Tolle DA (1983) Field and Laboratory Evaluation of Terrestrial Microcosms for Assessing Ecological Effects of Utility Wastes. Project report No. 1224-5. Palo Alto, CA: Electric Power Research Institute, 183 PP.

    Google Scholar 

  • Van Voris P, Tolle DA, Arthur MF (1985) Experimental Terrestrial Soil-Core Microcosm Test Protocol. EPA 600/3-85-047. Corvallis, OR: US Environmental Protection Agency, Environmental Research Laboratory, 71 pp.

    Google Scholar 

  • Walter-Echols G, Lichtenstein EP (1977) Microbial reduction of phorate sulfoxide to phorate in a soil-lake mud-water microcosm. J Econ Entomol 70:505- 509

    Google Scholar 

  • Walter-Echols G, Lichtenstein EP (1978a) Movement and metabolism of [14C]Phorate in a flooded soil system. J Agric Food Chem 26: 599–604

    CAS  Google Scholar 

  • Walter-Echols G, Lichtenstein EP (1978b) Effects of lake bottom mud on the movement and metabolism of 14C-phorate in a flooded soil-plant system. J Environ Sei Health B 13: 149–168

    Google Scholar 

  • Watrud LS, Perlak FJ, Tran MT, Kusano K, Mayer EJ, Miller-Wideman MA, Obukowicz MG, Nelson DR, Kreitinger JP, Kaufman RJ (1985) Cloning of the Bacillus thurengiensis sub. sp. kurstaki delta-endotoxin gene into Psuedomonas fluorescens: Molecular biology and ecology of an engineered microbial pesticide. In: Halverson HO, Pramer D, Rogul M (eds) Engineered Organisms in the Environment: Scientific Issues. Washington DC: American Society of Microbiology

    Google Scholar 

  • Weinstein LH (1973) A cylindrical, open-top chamber for the exposure of plants to air pollutants in the field. J Environ Qual 2: 371–376

    Google Scholar 

  • Wilson JT, Enfield CG, Dunlop WJ, Cosby RL, Foster DA, Baskin LB (1981) Transport and fate of selected organic pollutants in a sandy soil. J Environ Qual 10: 501–506

    CAS  Google Scholar 

  • Wilson JT, Noonan MJ, McNabb JF (1985) Biodegradation of contaminants in the subsurface. In: Ward CH, Giger W, McCarty PL (eds) Ground Water Quality. New York: John Wiley & Sons, pp 483–492

    Google Scholar 

  • Wilson JT, Wilson BH (1985) Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49: 242–243

    PubMed  CAS  Google Scholar 

  • Wolfe NL, Burns LA, Stern WC (1982) Use of linear free energy relationships and an evaluative model to assess the fate and transport of phthalate esters in the aquatic environment. Chemosphere 9: 393–402

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gillett, J.W. (1989). The Role of Terrestrial Microcosms and Mesocosms in Ecotoxicologic Research. In: Levin, S.A., Kelly, J.R., Harwell, M.A., Kimball, K.D. (eds) Ecotoxicology: Problems and Approaches. Springer Advanced Text in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3520-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3520-0_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8138-2

  • Online ISBN: 978-1-4612-3520-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics