Strong Squeezing Property

  • P. Constantin
  • C. Foias
  • B. Nicolaenko
  • R. Teman
Part of the Applied Mathematical Sciences book series (AMS, volume 70)

Abstract

Let u i ,(t) = S(t)u i o , i = 1, 2, be two solutions of (2.1). Then their difference w = u1(t) − u2(t) satisfies the equation
$$ \frac{d}{w} + \rlap{--}{\lambda}\left( t \right)w = 0 ,$$
(4.1)
$$w\left( 0 \right) = {w_0} = u_1^0 - u_2^0,$$
(4.2)
where
$$ \begin{gathered} \rlap{--}{\lambda}\left( t \right)g = Ag + Cg + B\left( {u\left( t \right),g} \right) + B\left( {g,u\left( t \right)} \right), \hfill \\ u\left( t \right) = \frac{1}{2}\left( {{{u}_{1}}\left( t \right) + {{u}_{2}}\left( t \right)} \right) \hfill \\ \end{gathered} $$
(4.3)
.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • P. Constantin
    • 1
  • C. Foias
    • 2
  • B. Nicolaenko
    • 3
  • R. Teman
    • 4
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA
  3. 3.Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Department de MathematiquesUniversité de Paris-SudOrsayFrance

Personalised recommendations