Advertisement

Strong Squeezing Property

  • P. Constantin
  • C. Foias
  • B. Nicolaenko
  • R. Teman
Part of the Applied Mathematical Sciences book series (AMS, volume 70)

Abstract

Let u i ,(t) = S(t)u i o , i = 1, 2, be two solutions of (2.1). Then their difference w = u1(t) − u2(t) satisfies the equation
$$ \frac{d}{w} + \rlap{--}{\lambda}\left( t \right)w = 0 ,$$
(4.1)
$$w\left( 0 \right) = {w_0} = u_1^0 - u_2^0,$$
(4.2)
where
$$ \begin{gathered} \rlap{--}{\lambda}\left( t \right)g = Ag + Cg + B\left( {u\left( t \right),g} \right) + B\left( {g,u\left( t \right)} \right), \hfill \\ u\left( t \right) = \frac{1}{2}\left( {{{u}_{1}}\left( t \right) + {{u}_{2}}\left( t \right)} \right) \hfill \\ \end{gathered} $$
(4.3)
.

Keywords

Boussinesq Equation Lower Order Term Integral Manifold Inertial Manifold Hilliard Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • P. Constantin
    • 1
  • C. Foias
    • 2
  • B. Nicolaenko
    • 3
  • R. Teman
    • 4
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA
  3. 3.Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Department de MathematiquesUniversité de Paris-SudOrsayFrance

Personalised recommendations