Skip to main content
  • 318 Accesses

Abstract

To introduce the subject, we consider a few examples of nonlinear equations:

$${x^3} + x + 1 = 0$$

is an algebraic equation; there is only one unknown, but it occurs in the third power. There are three solutions, of which two are conjugate complex.

$$2x - \tan x = 0$$

is a transcendental equation. Again, only one unknown is present, but now in a transcendental function. There are denumerably many solutions.

$$\sin x + 3 \cos x = 2$$

is a transcendental equation only in an unessential way, since it can be transformed at once into a quadratic equation for eix. While there are infinitely many solutions, they can all be derived from two solutions through addition of multiples of 2π.

$${x^3} + {y^2} + 5 = 0$$
$$2x + {y^3} + 5y = 0$$

is a system of two nonlinear algebraic equations in two unknowns x and y. It can be reduced to one algebraic equation of degree 9 in only one unknown. This latter equation has nine solutions which generate nine pairs of numbers (x i ,y i ), i = 1,…, 9, satisfying the given system. (There are fewer if only real x,y are admitted.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alefeld, G. and Herzberger, J. [1983]: Introduction to Interval Computations, Academic Press, New York.

    MATH  Google Scholar 

  • Brent, R.P. [1973]: Algorithms for Minimization Without Derivatives, Prentice-Hall, Englewood Cliffs, N.J. 100.

    MATH  Google Scholar 

  • Dekker, T.J. [1969]: Finding a zero by means of successive linear interpolation, in Constructive Aspects of the Fundamental Theorem of Algebra (B. Dejon and P. Henrici, eds.), pp. 37–28. Wiley-Interscience, London.

    Google Scholar 

  • Dennis, J.E., Jr. and Schnabel, R.B. [1983]: Numerical Methods for Unconstrained Optim-ization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Fletcher, R. [1987]: Practical Methods of Optimization, 2nd ed., Wiley, Chichester.

    MATH  Google Scholar 

  • Forsythe, G.E., Malcolm, M.A. and Moler. C.B. [1977]: Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  • Fröberg, C.-E. [1985]: Numerical Mathematics. Theory and Computer Applications, Benjamin/Cummings, Menlo Park, California.

    MATH  Google Scholar 

  • Gautschi, W. [1984]: Questions of numerical condition related to polynomials, in Studies in Numerical Analysis (G.H. Golub, ed.), pp. 140–177, Studies in Mathematics24, The Mathematical Association of America.

    Google Scholar 

  • Gill, P.E., Murray, W. and Wright, M.H. [1981]: Practical Optimization,Academic Press, London.

    MATH  Google Scholar 

  • Goldstine, H.H. [1977]: A History of Numerical Analysis from the 16th Through the 19th Century, Studies in the History of Mathematics and Physical Sciences 2, Springer, New York.

    Google Scholar 

  • IMSL [1987]: Math/Library User’s Manual, Houston.

    Google Scholar 

  • Jenkins, M.A. and Traub, J.F. [1970]: A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration, Numer. Math. 14, 252–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Kahaner, D., Moler, C. and Nash, S. [1989]: Numerical Methods and Software, Prentice- Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  • Kantorovich, L. and Akilov, G.P. [1964]: Functional Analysis inNormed Spaces, International Series of Monographs in Pure and Applied Mathematics 46, Macmillan, New York.

    Google Scholar 

  • Maas, C. [1985]: Was ist das Falsche an der Regula Falsi? Mitt. Math. Ges. Hamburg 11, H. 3, 311–317.

    MathSciNet  MATH  Google Scholar 

  • Moré, J.J., Garbow, B.S. and Hillstrom, K.E. [1980]: User Guide for MINPACK-1, Argonne National Laboratory, Report ANL-80-74.

    Google Scholar 

  • Moser, J. [1961]: A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sei. USA. 47, 1824–1831.

    Article  MATH  Google Scholar 

  • Muller, D.E. [1956]: A method for solving algebraic equations using an automatic computer, Math. Tables Aids Comput. 10, 208–215.

    Article  MathSciNet  MATH  Google Scholar 

  • Ortega, J.M. and Rheinboldt, W.C. [1970]: Iterative Solution of Nonlinear Equations in Several Variables Academic Press, New York.

    Google Scholar 

  • Ostrowski, A.M. [1973]: Solution of Equations in Euclidean and Banach Spaces,Pure and Applied Mathematics 9, Academic Press, New York.

    Google Scholar 

  • Peters, G. and Wilkinson, J.H. [1971]: Practical problems arising in the solution of polynomial equations, J. Inst. Math. Appl. 8, 16–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Potra, F.A. [1989]: On q-order and r-order of convergence, J. Optim. Theory Appl. 63, no. 3.

    Google Scholar 

  • Potra, F.A. and Ptak, V. [1984]: Nondiscrete Induction and Iterative Processes, Pitman, Boston.

    MATH  Google Scholar 

  • Powell, MJ.D. [1970]: A hybrid method for nonlinear equations, in Numerical Methods for Nonlinear Algebraic Equations (P. Rabinowitz, ed.), pp. 87–114. Gordon and Breach, London.

    Google Scholar 

  • Schmidt, J.W. [1963]: Eine Übertragung der Regula Falsi auf Gleichungen in Banachräumen I, II, Z. Angew. Math. Mech. 43, 1–8, 97–110.

    Article  Google Scholar 

  • Stoer, J. and Bulirsch, R. [1980]: Introduction to Numerical Analysis, Springer, New York.

    Google Scholar 

  • Watson, L.T., Billups, S.C. and Morgan, A.P. [1987]: Algorithm 652 - HOMPACK: A suite of codes for globally convergent homotopy algorithms, ACM Trans. Math. Software 13, 281–310.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilkinson, J.H. [1963]: Rounding Errors in Algebraic Processes, Prentice-Hall, Engle- wood Cliffs, N. J.

    MATH  Google Scholar 

  • Wilkinson, J.H. [1984]: The perfidious polynomial, in Studies in Numerical Analysis(G.H. Golub, ed.), pp. 1–28, Studies in Mathematics 24, The Mathematical Association of America.

    Google Scholar 

Download references

Authors

Editor information

Martin Gutknecht

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Rutishauser, H. (1990). Nonlinear Equations. In: Gutknecht, M. (eds) Lectures on Numerical Mathematics. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3468-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3468-5_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8035-4

  • Online ISBN: 978-1-4612-3468-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics