Advertisement

Oscillations of Quadratic L-Functions

  • R. C. Baker
  • Hugh L. Montgomery
Chapter
Part of the Progress in Mathematics book series (PM, volume 85)

Abstract

All real non-principal characters are of the form \( XD\left( n \right) = \left( {\frac{D}{n}} \right) \) where D belongs to the set Q of quadratic discriminants, Q={D : D is not a square and D ≡ 0 or 1 (mod 4)}.

Keywords

Chinese Remainder Theorem Quadratic Residue Acta Arith Real Character Asymptotic Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.C. Baker and G. Harman, Unbalanced quadratic residues and non-residues, Proc. Camb. Philos. Soc. 98 (1975), 9–17.MathSciNetCrossRefGoogle Scholar
  2. [2]
    P.T. Bateman, G.B. Purdy and S. Wagstaff, Some numerical results on Fekete polynomials, Math. Comp. 29 (1975), 7–23.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S.D. Chowla, Note on Dirichlet’s L-fucnctions, Acta Arith. 1 (1936), 113–114.MathSciNetGoogle Scholar
  4. [4]
    K.L Chung, A course in probability theory, Harcourt, Brace and World (New York ), 1968.MATHGoogle Scholar
  5. [5]
    E. Cohen and R.L. Robinson, On the distribution of the k-free integers in residue classes, Acta Arith. 8 (1962/3), 283–293.MathSciNetGoogle Scholar
  6. [6]
    H. Davenport, Multiplicative Number Theory, Second Edition, Springer-Verlag (New York), 1980, 178 pp.MATHGoogle Scholar
  7. [7]
    P.D.T.A. Elliott, On the mean value of f(p), Proc. London Math. Soc. (3) 21 (1970), 28–96.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    P.D.T.A. Elliott, On the distribution of the values of quadratic L-series in the half-plane σ 1/2, Invent. Math. 21 (1973), 319–338.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H. Heilbronn, On real characters, Acta Arith. 2 (1937), 212–213.MATHGoogle Scholar
  10. [10]
    M. Jutila, On character sums and class numbers, J. Number Theory 5 (1973), 203–214.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    M. Jutila, A density estimate for L-functions with a real character, Ann. Acad. Sci. Fenn. Ser. AI 508 (1972), 10 pp.MathSciNetGoogle Scholar
  12. [12]
    M. Jutila, On the mean values of L-functions and short character sums with real characters, Acta Arith. 26 (1975), 405–410.MathSciNetMATHGoogle Scholar
  13. [13]
    M. Jutila, On the mean values of Dirichlet polynomials with real characters, Acta Arith. 27 (1975), 191–198.MathSciNetMATHGoogle Scholar
  14. [14]
    J. Kaczorowski, Some problems concerning roots of polynomials with Dirichlet characters as coefficients, in Elementary and Analytic Theory of Numbers, Henryk Iwaniec, ed., Banach Center Publ., 1985, pp. 333–337.Google Scholar
  15. [15]
    S. Karlin, Total Positivity, Stanford University Press (Stanford), 1968.Google Scholar
  16. [16]
    H.L. Montgomery and R.C. Vaughan, Mean values of character sums, Canadian J. Math. 31 (1979), 476–487.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    G. Pólya, Verschiedene Bemerkung zur Zahlentheorie, Jber. Deutsch. Math. Verein 28 (1919), 31–40.MATHGoogle Scholar
  18. [18]
    G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vols I and II, Springer-Verlag (Berlin ), 1964.MATHGoogle Scholar
  19. [19]
    D. Wolke, Eine Bemerkung über das Legendre-Symbol, Monat. Math. 77 (1973), 267 - 275.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Bikhäuser Boston 1990

Authors and Affiliations

  • R. C. Baker
    • 1
  • Hugh L. Montgomery
    • 2
  1. 1.Royal Holloway and Bedford New CollegeEgham, SurreyEngland, UK
  2. 2.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations