Skip to main content

Correspondence of Internal and External Stability — Realization, Transfer Functions and Complex Analysis

  • Chapter
Realization and Modelling in System Theory

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 3))

Abstract

It is well known that for infinite-dimensional systems, exponential stability is not necessarily determined by the location of its spectrum. Similarly, a transfer function in H (ℂ+) need not have an exponentially stable realization. This paper addresses this problem for a class of impulse responses called pseudorational. In this class, it is shown that the difficulty is related to classical complex analysis, in particular that of entire functions of finite order. The infinite-product representation for entire functions makes it possible to prove that stability is indeed determined by the location of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Boas Jr., Entire Functions, Academic, 1954.

    Google Scholar 

  2. F. M. Callier and J. Winkin, “Distributed system transfer functions of exponential order,” Int. J. Control, 43: 1353–1373, 1986.

    Article  Google Scholar 

  3. M. J. Chen and C. A. Desoer, “Necessary and sufficient conditions for robust stability of linear distributed feedback systems,” Int. J. Control, 35: 255–267, 1982.

    Article  Google Scholar 

  4. R. F. Curtain, “Equivalence of input-output stability and exponential stability for infinite dimensional systems,” Math. Systems Theory, 21: 19–48, 1988.

    Article  Google Scholar 

  5. C. A. Desoer and M. Vidyasagar, Feedback Systems: Input/Output Properties, Academic Press, 1975.

    Google Scholar 

  6. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc, 1957.

    Google Scholar 

  7. C. A. Jacobson and C. N. Nett, “Linear state-space systems in infinite-dimension al space: the role and characterization of joint stabilizability/detectability,” IEEE Trans. Autom. Control, 33: 541–549, 1988

    Article  Google Scholar 

  8. P. P. Khargonekar and K. Poola, “Robust stabilization of distributed systems,” Automatica, 22: 77–84, 1986.

    Article  Google Scholar 

  9. H. Logemann, “On the transfer matrix of a neutral system: Characterizations of exponential stability in input-output terms,” Syst. Contr. Letters, 9: 393–400, 1987.

    Article  Google Scholar 

  10. A. J. Prichard and J. Zabczyk, “Stability and stabilizability of infinite dimensional systems,” SIAM Review, 23: 25–52, 1983.

    Article  Google Scholar 

  11. J. Prüss, “On the spectrum of C 0-semigroups,” Trans. Amer. Math. Soc., 284: 847–857, 1984.

    Article  Google Scholar 

  12. L. Schwartz, Théorie des Distributions, 2me Edition, Hermann, 1966.

    Google Scholar 

  13. G. Weiss, “Weak L p-stability of a linear semigroup on a Hilbert space implies exponential stability,” to appear in J. Diff. Eqns., 1988.

    Google Scholar 

  14. D. V. Widder, The Laplace Transform, Princeton Univ. Press, 1946.

    Google Scholar 

  15. Y. Yamamoto, “A note on linear input/output maps of bounded type,” IEEE Trans. Autom. Control, AC-29: 733–734, 1984

    Google Scholar 

  16. Y. Yamamoto and S. Ueshima, “A new model for neutral delay-differential systems,” Int. J. Control, 43: 465–472, 1986.

    Article  Google Scholar 

  17. Y. Yamamoto, “Pseudo-rational input/output maps and their realizations: a fractional representation approach to infinite-dimensional systems,” SIAM J. Control & Optimiz., 26: 1415–1430, 1988.

    Article  Google Scholar 

  18. Y. Yamamoto, “Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems,” SIAM J. Control & Optimiz., 27: 217–234, 1989.

    Article  Google Scholar 

  19. Y. Yamamoto and S. Hara, “Relationships between internal and external stability with applications to a servo problem,” IEEE Trans. Autom. Control, AC-33: 1044–1052, 1988.

    Article  Google Scholar 

  20. Y. Yamamoto and S. Hara, “Robust stability condition for infinite-dimensional systems with internal exponential stability,” submitted to Proc. MTNS-89 at Amsterdam, The Netherlands.

    Google Scholar 

  21. J. Zabczyk, “A note on C 0-semigroups,” Bull l’Acad. Pol. de Se. Serie Math., 23: 895–898, 1975.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston

About this chapter

Cite this chapter

Yamamoto, Y. (1990). Correspondence of Internal and External Stability — Realization, Transfer Functions and Complex Analysis. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C.M. (eds) Realization and Modelling in System Theory. Progress in Systems and Control Theory, vol 3. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3462-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3462-3_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8033-0

  • Online ISBN: 978-1-4612-3462-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics