Skip to main content

Prolactin Releasing and Inhibiting Factors in the Posterior Pituitary

  • Chapter
Neuroendocrine Perspectives

Part of the book series: Neuroendocrine Perspectives ((NEUROENDOCRINE,volume 8))

Abstract

Prolactin (PRL) is more versatile than any other anterior pituitary hormone. PRL is prevalent in all vertebrates and exhibits a broad spectrum of functions. Among these are nurturing of the young, reproduction, osmoregulation, promotion of growth, support of metabolism, immune modulation, water drive, metamorphosis, support of the integument, and migratory and parental behavior. Thus, unlike other pituitary hormones, PRL was not committed early in evolution to the control of one or a few related functions, but remained diversified and adaptive in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjorklund A, Moore RY, Nobin A, Stenevi V (1973) The organization of the tubero-hypophyseal and reticulo-infundibular catecholamine neuron system in the rat brain. Brain Res 51: 171–191

    Article  PubMed  CAS  Google Scholar 

  2. Nogami H, Yoshimura F (1982) Fine structural criteria of prolactin cells identified immunohistochemically in the male rat. Anat Rec 202: 261–274

    Article  PubMed  CAS  Google Scholar 

  3. Setalo G, Nakane PK (1976) Functional differentiation of fetal anterior pituitary cells in the rat. Endocrinol Exp 10: 155–159

    PubMed  CAS  Google Scholar 

  4. Boockfor FR, Hoeffler JP, Frawley LS (1986) Analysis by plaque assays of GH and prolactin release from individual cells in cultures of male pituitaries. Neuroendocrinology 42: 64–70

    Article  PubMed  CAS  Google Scholar 

  5. Leong DA, Lau SK, Sinha YN, Kaiser DL, Thorner MO (1985) Enumeration of lactotropes and somatotropes among male and female pituitary cells in culture: evidence in favor of a mammosomatotrope subpopulation in the rat. Endocrinology 116: 1371–1378

    Article  PubMed  CAS  Google Scholar 

  6. Lloyd HM, Meares JD, Jacob J (1975) Effects of oestrogen and bromocryptine on in vivo secretion and mitosis in prolactin cells. Nature 255: 497–498

    Article  PubMed  CAS  Google Scholar 

  7. Nikitovitch-Winer MB, Atkin J, Maley BE (1987) Colocalization of prolactin and growth hormone within specific adenohypophyseal cells in male, female, and lactating female rats. Endocrinology 121: 625–630

    Article  PubMed  CAS  Google Scholar 

  8. Bassetti M, Spada A, Arosio M, Vallar L, Brina M, Giannattasio G (1986) Morphological studies on mixed growth hormone (GH)- and prolactin (PRL)-secreting human pituitary adenomas. Coexistence of GH and PRL in the same secretory granule. J Clin Endocrinol Metab 62: 1093–1100

    Article  PubMed  CAS  Google Scholar 

  9. Frawley LS, Boockfor FR, Hoeffler JP (1985) Identification by plaque assays of a pituitary cell type that secretes both growth hormone and prolactin. Endocrinology 116: 734–737

    Article  PubMed  CAS  Google Scholar 

  10. Papka RE, Yu SM, Nikitovitch-Winer MB (1986) Use of immunoperoxidase and immunogold methods in studying prolactin secretion and application of immunogold labeling for pituitary hormones neuropeptides. Am J Anat 175: 289–306

    Article  PubMed  CAS  Google Scholar 

  11. Boockfor FR, Frawley LS (1987) Functional variations among prolactin cells from different pituitary regions. Endocrinology 120: 874–879

    Article  PubMed  CAS  Google Scholar 

  12. Tweedle CD, Hatton GI (1980) Glial cell enclosure of neurosecretory endings in the neurohypophysis of the rat. Brain Res 192: 555–559

    Article  Google Scholar 

  13. May V, Stoffers DA, Eipper BA (1989) Proadrenocorticotropin/endorphin production and messenger ribonucleic acid levels in primary intermediate pituitary cultures: effects of serum, isoproterenol, and dibutyryl adenosine 3′, 5′-monophosphate. Endocrinology 124: 157–166

    Article  PubMed  CAS  Google Scholar 

  14. Iturriza FC (1989) Two kinds of cells in grafts of pituitary pars intermedia and their probable dependence on dopamine. Neuroendocrinology 49: 1–6

    Article  PubMed  CAS  Google Scholar 

  15. Wingstrand KG (1966) Microscopic anatomy, nerve supply and blood supply of the pars intermedia. In: Harris GW, Donovan BT (eds) The pituitary gland, London: Butterworths: pp 1–27

    Google Scholar 

  16. Bergland RM, Page RB (1979) Pituitary-brain vascular relations: A new paradigm. Science 204: 18–24

    Article  PubMed  CAS  Google Scholar 

  17. Elias KA, Weiner RI (1987) Inhibition of estrogen-induced anterior pituitary enlargement and arteriogenesis by bromocriptine in Fischer 344 rats. Endocrinology 120: 617–621

    Article  PubMed  CAS  Google Scholar 

  18. Daniel PM, Prichard MML (1975) Studies of the hypothalamus and the pituitary gland (with special reference to the effects of transection of the pituitary stalk). Acta Endocrinol 80: 81–102

    Google Scholar 

  19. Daniel PM, Prichard MML (1956) Anterior pituitary necrosis infarction of the pars distalis produced experimentally in the rat. Quart J Exp Physiol 41: 215–229

    PubMed  CAS  Google Scholar 

  20. Page RB, Bergland RM (1976) The neurohypophyseal capillary bed: Anatomy and arterial supply. Am J Anat 148: 345–358

    Article  Google Scholar 

  21. Porter JC, Kamberi IA, Grazia YR (1971) Pituitary blood flow and portal vessels. In: Martini L, Ganong WF (eds) Frontiers in Neuroendocrinology, Oxford University Press: pp 145–175

    Google Scholar 

  22. Porter JC, Mical RS, Ben-Jonathan N, Ondo JG (1973) Neurovascular regulation of the anterior hypophysis. Recent Prog Horm Res 29: 161–198

    PubMed  CAS  Google Scholar 

  23. Porter JC, Smith KR (1967) Collection of hypophyseal stalk blood in rats. Endocrinology 81: 1182–1185

    Article  PubMed  CAS  Google Scholar 

  24. Page RB (1983) Directional pituitary blood flow: A microcinephotographic study. Endocrinology 112: 157–165

    Article  PubMed  CAS  Google Scholar 

  25. Oliver C, Mical RS, Porter JC (1977) Hypothalamic-pituitary vasculature: Evidence for retrograde blood flow in the pituitary stalk. Endocrinology 101: 598–604

    Article  PubMed  CAS  Google Scholar 

  26. Moore RY, Bloom FE (1978) Central catecholamine neuron systems: Anatomy and physiology of the dopamine systems. Ann Rev Neurosci 1: 129–169

    Article  PubMed  CAS  Google Scholar 

  27. Bjorklund A, Lindvall O, Nobin A (1975) Evidence of an incerto-hypothalamic dopamine neuron system in the rat. Brain Res 89: 29–42

    Article  PubMed  CAS  Google Scholar 

  28. Kiss J, Halasz B (1986) Synaptic connections between serotonergic axon terminals and tyrosine hydroxylase-immunoreactive neurons in the arcuate nucleus of the rat hypothalamus. A combination of electron microscopic autoradiography and immunocytochemistry. Brain Res 364: 284–294

    Article  PubMed  CAS  Google Scholar 

  29. Ajika K, Hökfelt T (1975) Projections to the median eminence and the arcuate nucleus with special reference to monoamine systems: Effects of lesions. Cell Tissue Res 158: 15–35

    Article  PubMed  CAS  Google Scholar 

  30. Ben-Jonathan N, Oliver C, Winer HJ, Mical RS, Porter JC (1977) Dopamine in hypophyseal portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology 100: 452–458

    Article  PubMed  CAS  Google Scholar 

  31. Ben-Jonathan N, Porter JC (1976) A sensitive radioenzymatic assay for dopamine, norepinephrine and epinephrine in plasma and tissue. Endocrinology 98: 1497–1507

    Article  PubMed  CAS  Google Scholar 

  32. Arbogast LA, Murai I, Ben-Jonathan N (1989) Differential alterations in dopamine turnover rates in the stalk-median eminence and posterior pituitary during the preovulatory prolactin surge. Neuroendocrinology 49: 525–530

    Article  PubMed  CAS  Google Scholar 

  33. Davis MD, Lichtensteiger W, Schlumpf M, Bruinink A (1984) Early postnatal development of pituitary intermediate lobe control in the rat by dopamine neurons. Neuroendocrinology 39: 1–12

    Article  PubMed  CAS  Google Scholar 

  34. Lookingland KJ, Farah JM, Lovell KL, Moore KE (1985) Differential regulation of tuberohypophyseal dopaminergic neurons terminating in the intermediate lobe and in the neural lobe of the rat pituitary gland. Neuroendocrinology 40: 145–151

    Article  PubMed  CAS  Google Scholar 

  35. Saavedra JM, Palkovits M, Kizer JS, Brownstein M, Zivin JA (1975) Distribution of biogenic amines and related enzymes in the rat pituitary gland. J Neurochem 25: 257–260

    Article  PubMed  CAS  Google Scholar 

  36. Saavedra JM (1985) Central and peripheral catecholamine innervation of the rat intermediate and posterior pituitary lobes. Neuroendocrinology 40: 281–284

    Article  PubMed  CAS  Google Scholar 

  37. Barden N, Chevillard C, Saavedra JM (1982) Diurnal variations in rat posterior pituitary catecholamine levels. Neuroendocrinology 34: 148–150

    Article  PubMed  CAS  Google Scholar 

  38. SteinBusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat: Cell bodies and terminals. Neuroscience 6: 557–618

    Article  PubMed  CAS  Google Scholar 

  39. Westlund KN, Childs GV (1982) Localization of serotonin fibers in the rat adenohypophysis. Endocrinology 111: 1761–1763

    Article  PubMed  CAS  Google Scholar 

  40. Palkovits M, Mezey E, Chiueh CG, Krieger DT, Gallatz K, Brownstein MJ (1986) Serotonin-containing elements of the rat pituitary intermediate lobe. Neuroendocrinology 42: 522–525

    Article  PubMed  CAS  Google Scholar 

  41. Payette RF, Gershon MD, Nunez EA (1985) Serotonergic elements of the mammalian pituitary. Endocrinology 116: 1933–1942

    Article  PubMed  CAS  Google Scholar 

  42. Caligaris L, Taliesnik S (1974) Involvement of neurons containing 5-hydroxtryptamine in the mechanism of prolactin release induced by oestrogen. J Endocrinol 62: 25–32

    Article  PubMed  CAS  Google Scholar 

  43. Barofsky A, Taylor J, Massari VJ (1983) Dorsal raphe-hypothalamic projections provide the stimulatory serotonergic input to suckling-induced prolactin release. Endocrinology 113: 1894–1903

    Article  PubMed  CAS  Google Scholar 

  44. Hyde JF, Murai I, Ben-Jonathan N (1987) The posterior pituitary contains a potent prolactin-releasing factor: Studies with perifused anterior pituitary cells. Endocrinology 121: 1531–1539

    Article  PubMed  CAS  Google Scholar 

  45. Kamberi IA, Mical RS, Porter JC (1971) Effect of melatonin and serotonin on the release of FSH and prolactin. Endocrinology 88: 1288–1293

    Article  PubMed  CAS  Google Scholar 

  46. Gainer H, Sarne Y, Brownstein M (1977) Biosynthesis and axonal transport of rat neurohypophyseal proteins and peptides. J Cell Biol 73: 366–381

    Article  PubMed  CAS  Google Scholar 

  47. Swann RW, Gonzalez CB, Birkett SD, Pickering BT (1982) Precursors in the biosynthesis of vasopressin and oxytocin in the rat. J Biochem 208: 339–345

    CAS  Google Scholar 

  48. Antunes JL, Carmel PW, Zimmerman EA (1977) Projections from the paraventricular nucleus to the zona externa of the median eminence of the rhesus monkey: An immunohistochemical study. Brain Res 137: 1–10

    Article  PubMed  CAS  Google Scholar 

  49. Recht LD, Hoffman DL, Haldar J, Silverman AJ, Zimmerman EA (1981) Vasopressin concentrations in hypophyseal portal plasma: Insignificant reduction following removal of the posterior pituitary gland. Neuroendocrinology 33: 88–90

    Article  PubMed  Google Scholar 

  50. Gibbs DM (1984) High concentrations of oxytocin in hypophyseal portal plasma. Endocrinology 114: 1216–1218

    Article  PubMed  CAS  Google Scholar 

  51. Lumpkin MD, Samson WK, McCann SM (1983) Hypothalamic and pituitary sites of action of oxytocin to alter prolactin secretion in the rat. Endocrinology 112: 1711–1717

    Article  PubMed  CAS  Google Scholar 

  52. Samson WK, Lumpkin MD, McCann SM (1986) Evidence for a physiological role for oxytocin in the control of prolactin secretion. Endocrinology 119: 554–560

    Article  PubMed  CAS  Google Scholar 

  53. Thomas GB, Cummins JT, Griffin N, Clarke IJ (1988) Effect and site of action of hypothalamic neuropeptides on prolactin release in sheep. Neuroendocrinology 48: 252–257

    Article  PubMed  CAS  Google Scholar 

  54. Nagy G, Mulchahey JJ, Smyth DG, Neill JD (1988) The glycopeptide moiety of vasopressin-neurophysin precursor is neurohypophyseal prolactin releasing factor. Biochem Biophys Res Commun 151: 524–529

    Article  PubMed  CAS  Google Scholar 

  55. Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Ann Rev Neurosci 6: 269–324

    Article  PubMed  CAS  Google Scholar 

  56. Kiss JZ, Kanyicska B, Nagy GY (1986) The hypothalamic paraventricular nucleus has a pivotal role in regulation of prolactin release in lactating rats. Endocrinology 119: 870–873

    Article  PubMed  CAS  Google Scholar 

  57. Sheward WJ, Harmar A J, Fraser HM, Fink G (1983) Thyrotropin-releasing hormone in rat pituitary stalk blood and hypothalamus: Studies with high performance liquid chromatography. Endocrinology 113: 1865–1869

    Article  PubMed  CAS  Google Scholar 

  58. Said SI, Porter JC (1979) Vasoactive intestinal polypeptide: Release into hypophyseal portal blood. Life Sci 24: 227–231

    Article  PubMed  CAS  Google Scholar 

  59. Matsushita N, Kato Y, Shimatsu A, Katakami H, Yanaihara N, Imura H (1983) Effects of VIP, TRH, GABA and dopamine on prolactin release from superfused rat anterior pituitary cells. Life Sci 32: 1263–1269

    Article  PubMed  CAS  Google Scholar 

  60. Abe H, Engler D, Molitch ME, Bollinger-Gruber J, Reichlin S (1985) Vasoactive intestinal peptide is a physiological mediator of prolactin release in the rat. Endocrinology 116: 1383–1390

    Article  PubMed  CAS  Google Scholar 

  61. Koch Y, Goldhaber G, Fireman I, Zor U, Shani J, Tal E (1977) Suppression of prolactin and thyrotropin secretion in the rat by antiserum to thyrotropin-releasing hormone. Endocrinology 100: 1476–1478

    Article  PubMed  CAS  Google Scholar 

  62. Oliver C, Eskay RL, Ben-Jonathan N, Porter JC (1974) Distribution and concentration of thyrotropin-releasing hormone in the rat brain. Endocrinology 95: 540–546

    Article  PubMed  CAS  Google Scholar 

  63. Lechan RM, Jackson IMD (1982) Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology 111: 55–65

    Article  PubMed  CAS  Google Scholar 

  64. Lind RW, Swanson LW, Bruhn TO, Ganten D (1985) The distribution of angiotensin II-immunoreactive cells and fibers in the paraventriculo-hypophyseal system of the rat. Brain Res 338: 81–89

    Article  PubMed  CAS  Google Scholar 

  65. Murai I, Reichlin S, Ben-Jonathan N (1989) The peak phase of the proestrous prolactin surge is blocked by either posterior pituitary lobectomy or antisera to vasoactive intestinal peptide. Endocrinology 124: 1050–1055

    Article  PubMed  CAS  Google Scholar 

  66. Morel G, Besson J, Rosselin G, Dubois PM (1982) Ultrastructural evidence for endogenous vasoactive intestinal peptide-like immunoreactivity in the pituitary gland. Neuroendocrinology 34: 85–90

    Article  PubMed  CAS  Google Scholar 

  67. Lam KSL, Lechan RM, Minamitani N, Segerson TP, Reichlin S (1989) Vasoactive intestinal peptide in the anterior pituitary is increased in hypothyroidism. Endocrinology 124: 1077–1084

    Article  PubMed  CAS  Google Scholar 

  68. Deschepper CF, Crumrine DA, Ganong WF (1986) Evidence that the gonadotrophs are the likely site of production of angiotensin II in the anterior pituitary of the rat. Endocrinology 119: 36–43

    Article  PubMed  CAS  Google Scholar 

  69. Nikolics K, Mason AJ, Szony E, Ramachandran J, Seeburg PH (1985) A prolactin-inhibiting factor within the precursor for human gonadotropin-releasing hormone. Nature 316: 511–517

    Article  PubMed  CAS  Google Scholar 

  70. Philips HS, Nikolics K, Brauton O, Seeburg PH (1985) Immunocytochemical localization in rat brain of a prolactin release-inhibiting sequence of gonadotropin-releasing hormone prehormone. Nature 316: 542–545

    Article  Google Scholar 

  71. Clarke IJ, Cummins JT, Karsch FJ, Seeburg PH, Nikolics K (1987) GnRH-associated peptide (GAP) is cosecreted with GnRH into the hypophyseal portal blood of ovariectomized sheep. Biochem Biophys Res Commun 143: 665–669

    Article  PubMed  CAS  Google Scholar 

  72. Yu WH, Seeburg PH, Nikolics K, McCann SM (1988) Gonadotropin-releasing hormone-associated peptide exerts a prolactin-inhibiting and weak gonadotropin-releasing activity in vivo. Endocrinology 123: 390–395

    Article  PubMed  CAS  Google Scholar 

  73. Pohl CR, Weiner RI, Smith MS (1988) Relation between luteinizing hormone and prolactin pulses in ovariectomized rats with or without dopamine inhibition. Endocrinology 123: 1591–1597

    Article  PubMed  CAS  Google Scholar 

  74. Thomas GB, Cummins JT, Boughton BW, Griffin N, Millar RP, Milton RC, Clarke IJ (1988) Gonadotropin-releasing hormone associated peptide (GAP) and putative processed GAP peptides do not release luteinizing hormone or follicle-stimulating hormone or inhibit prolactin secretion in the sheep. Neuroendocrinology 48: 342–350

    Article  PubMed  CAS  Google Scholar 

  75. Cuello AC (1983) Central distribution of opioid peptides. Brit Med Bull 39: 11–16

    PubMed  CAS  Google Scholar 

  76. Eipper BA, Mains RE (1980) Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocr Rev 1: 1–27

    Article  PubMed  CAS  Google Scholar 

  77. Liotta AS, Yamaguchi H, Krieger DT (1981) Biosynthesis and release of β-endorphin, n-acetyl β-endorphin, β-endorphin-(l, 27)-like peptides by rat pituitary neurointermediate lobe: β-endorphin is not further processed by anterior lobe. J Neurosci 1: 585

    PubMed  CAS  Google Scholar 

  78. Dupont A, Barden N, Cusan L, Merand Y, Labrie F, Vaudry H (1980) β-endorphin and met-enkephalins: Their distribution, modulation by estrogens and haloperidol, and role in neuroendocrine control. Fed Proc 39: 2544–2550

    PubMed  CAS  Google Scholar 

  79. Bruni JF, Van Vugt D, Marshall S, Meites J (1977) Effects of naloxone, morphine and methionine enkephalin on serum prolactin, luteinizing hormone, follicle-stimulating hormone, thyroid-stimulating hormone and growth hormone. Life Sci 21: 461–466

    Article  PubMed  CAS  Google Scholar 

  80. Grandison L, Guidotti A (1977) Regulation of prolactin release by endogenous opiates. Nature 270: 357–359

    Article  PubMed  CAS  Google Scholar 

  81. Ben-Jonathan N (1980) Catecholamines and pituitary prolactin release. J Repro Fert 58: 501–512

    Article  CAS  Google Scholar 

  82. Murai I, Low WC, Ben-Jonathan N (1989) Application of microsurgical techniques for studying functional correlates of the hypothalamo-hypophyseal axis. In: Conn PM (ed) Methods in Enzymology: Neuroendocrine Peptides, vol 168, New York: Academic Press: pp 234–254

    Chapter  Google Scholar 

  83. Peters LL, Hoefer MT, Ben-Jonathan N (1981) The posterior pituitary: Regulation of anterior pituitary prolactin secretion. Science 213: 659–661

    Article  PubMed  CAS  Google Scholar 

  84. Froehlich JC, Ben-Jonathan N (1984) Posterior pituitary involvement in the control of luteinizing hormone and prolactin secretion during the estrous cycle. Endocrinology 114: 1059–1064

    Article  PubMed  CAS  Google Scholar 

  85. Ben-Jonathan N, Peters LL (1982) Posterior pituitary lobectomy: differential elevation in plasma prolactin and luteinizing hormone in estrous and lactating rats. Endocrinology 110: 1861–1865

    Article  PubMed  CAS  Google Scholar 

  86. Froehlich JC, Neill MA, Ben-Jonathan N (1985) Interaction between the posterior pituitary and hypothalamic luteinizing hormone-releasing hormone in the control of luteinizing hormone secretion. Peptides 6: Suppl 1: 121–131

    Google Scholar 

  87. Ferin M, Van Vugt D, Wardlaw S (1984) The hypothalamic control of the menstrual cycle and the role of endogenous opioid peptides. Recent Prog Horm Res 40: 441–485

    PubMed  CAS  Google Scholar 

  88. Murai I, Ben-Jonathan N (1986) Chronic posterior pituitary lobectomy: Prolonged elevation of plasma prolactin and interruption of cyclicity. Neuroendocrinology 43: 453—458

    Article  PubMed  CAS  Google Scholar 

  89. Fagin KD, Neill JD (1982) Involvement of the neurointermediate lobe of the pituitary gland in the secretion of prolactin and luteinizing hormone in the rat. Life Sci 30: 1135—1141

    Article  PubMed  CAS  Google Scholar 

  90. Moll J, de Wied D (1962) Observation on the hypothalamo-posthypophyseal system of the posterior lobectomized rat. Clin and Compar Endocrinol 2: 215–228

    Article  CAS  Google Scholar 

  91. Demarest KT, Riegle GD, Moore KE (1986) The rapid “tonic” and the delayed “induction” components of the prolactin-induced activation of tuberoinfundibular dopaminergic neurons following the systemic administration of prolactin. Neuroendocrinology 43: 291–299

    Article  PubMed  CAS  Google Scholar 

  92. Selmanoff M (1985) Rapid effects of hyperprolactinemia on basal prolactin secretion and dopamine turnover in the medial and lateral median eminence. Endocrinology 116: 1943–1952

    Article  PubMed  CAS  Google Scholar 

  93. Gudelsky GA, Porter JC (1980) Release of dopamine from tuberoinfundibular neurons into pituitary stalk blood after prolactin or haloperidol administration. Endocrinology 106: 526–529

    Article  PubMed  CAS  Google Scholar 

  94. Johnston CA, Demarest KT, Moore KE (1980) Cycloheximide disrupts the prolactin-mediated stimulation of dopamine synthesis in tuberoinfundibular neurons. Brain Res 195: 236–240

    Article  PubMed  CAS  Google Scholar 

  95. Wuttke W, Hohn KG, Honma K, Hilgendorf W, Lamberts R (1980) Interrelationship between prolactin and gonadotropin. In: MacLeod RM, Scapagnini U (eds) Central and Peripheral Regulation of Prolactin Function, New York: Raven Press: pp 221–236

    Google Scholar 

  96. Garcia A, Herbon L, Markan A, Papavasiliou S, Marshall JC (1985) Hyperprolactinemia inhibits gonadotropin-releasing hormone (GnRH) stimulation of the number of pituitary GnRH receptors. Endocrinology 117: 954–959

    Article  PubMed  CAS  Google Scholar 

  97. Murai I, Garris PA, Ben-Jonathan N (1989) Time-dependent increase in plasma prolactin after pituitary stalk-section: Role of posterior pituitary dopamine. Endocrinology 124: 2343–2349

    Article  PubMed  CAS  Google Scholar 

  98. Ben-Jonathan N, Froehlich JC (1985) The posterior pituitary dopaminergic system and its regulation of anterior pituitary hormone secretion. In: Ben-Jonathan N, Bahr JM, Weiner RI (eds) Catecholamines as Hormone Regulators, New York: Raven Press: pp 145–160

    Google Scholar 

  99. Mulchahey JJ, Neill JD (1986) Dopamine levels in the anterior pituitary gland monitored by in vivo electrochemistry. Brain Res 386: 332–340

    Article  PubMed  CAS  Google Scholar 

  100. Kanematsu S, Sawyer CH (1973) Elevation of plasma prolactin after hypophyseal stalk section in the rat. Endocrinology 93: 238–241

    Article  PubMed  CAS  Google Scholar 

  101. Vaghan L, Carmel PW, Dyrenfurth I, Frantz AG, Antunes JL, Ferin M (1980) Section of the pituitary stalk in the rhesus monkey: I. Endocrine studies. Neuroendocrinology 30: 70–75

    Article  Google Scholar 

  102. Molitch ME, Reichlin S (1985) Hypothalamic hyperprolactinemia: Neuroendocrine regulation of prolactin secretion in patients with lesions of the hypothalamus and pituitary stalk. In: MacLeod RM, Scapagnini U, Thorner MO (ed) Prolactin: Basic and Clinical Correlates, Padova: Liviana Press: pp 709–719

    Google Scholar 

  103. Thomas GB, Cummins JT, Canny BJ, Rundle SE, Griffin N, Katsahambas S, Clarke IJ (1989) The posterior pituitary regulates prolactin, but not adrenocorticotropin or gonadotropin sécrétion in the sheep. Endocrinology 125: 2204–2211

    Article  PubMed  CAS  Google Scholar 

  104. Bower A, Hadley ME, Hruby VJ (1974) Biogenic amines and control of melanophore-stimulating hormone release. Science 184: 70–72

    Article  PubMed  CAS  Google Scholar 

  105. Vermes I, Mulder GH, Smelik PG, Tilders FJH (1980) Differential control of β-endorphin/β-lipotropin secretion from anterior and intermediate lobes of the rat pituitary gland in vitro. Life Sei 27: 1761–1768

    Article  CAS  Google Scholar 

  106. Barnes PRJ, Dyball REJ (1982) Inhibition of neurohypophyseal hormone release by dopamine in the rat. J Physiol 327: 85–86

    Google Scholar 

  107. Holzbauer M, Racke K (1985) The dopaminergic innervation of the intermediate lobe and of the neural lobe of the pituitary gland. Med Biol 63: 97–116

    PubMed  CAS  Google Scholar 

  108. Holzbauer M, Sharman DF, Godden U, Mann SP, Stephens DB (1980) Effect of water and salt intake on pituitary catecholamines in the rat and domestic pig. Neuroscience 5: 1959–1968

    Article  PubMed  CAS  Google Scholar 

  109. Alper RH, Demarest KT, Moore KE (1982) Changes in the rate of dopamine synthesis in the posterior pituitary during dehydration and rehydration: Relationship to plasma sodium concentrations. Neuroendocrinology 34: 252–257

    Article  PubMed  CAS  Google Scholar 

  110. Holzbauer M, Sharman DF, Godden U (1978) Observations on the function of the dopaminergic nerves innervating the pituitary gland. Neuroscience 3: 1251–1262

    Article  PubMed  CAS  Google Scholar 

  111. Demarest KT, McKay DW, Riegle GD, Moore KE (1983) Biochemical indices of tuberoinfundibular dopaminergic neuronal activity during lactation: A lack of response to prolactin. Neuroendocrinology 36: 130–137

    Article  PubMed  CAS  Google Scholar 

  112. Barden N, Chevillard C, Saavedra JM (1982) Effects of acute and chronic 17-/β-estradiol administration on rhombencephalic, pineal and catecholamine levels in ovariectomized rats. Neuroendocrinology 35: 123–127

    Article  PubMed  CAS  Google Scholar 

  113. Fuxe K, Hökfelt T, Nilsson O (1969) Castration, sex hormones and tuberoinfundibular dopamine neurons. Neuroendocrinology 5: 107–120

    Article  PubMed  CAS  Google Scholar 

  114. Saavedra JM, Chevillard C, Bisserbe JC, Barden N (1984) Estradiol increases dopamine turnover in intermediate and posterior pituitary lobes of ovariectomized rats. Cell Mol Neurobiol 4: 397–401

    Article  PubMed  CAS  Google Scholar 

  115. Pelletier G, Liao N, Follea N, Govindan MV (1988) Distribution of estrogen receptors in the rat pituitary as studied by in situ hybridization. Mol Cell Endocr 56: 29–33

    Article  CAS  Google Scholar 

  116. Arbogast LA, Ben-Jonathan N (1988) The preovulatory prolactin surge: An evaluation of the role of dopamine. Endocrinology 123: 2690–2695

    Article  PubMed  CAS  Google Scholar 

  117. Arbogast LA, Ben-Jonathan N (1989) Tyrosine hydroxylase in the stalk-median eminence and posterior pituitary is inactivated only during the plateau phase of the preovulatory prolactin surge. Endocrinology 125: 667–674

    Article  PubMed  CAS  Google Scholar 

  118. Arbogast LA, Ben-Jonathan N (1990) The preovulatory prolactin surge is prolonged by a progesterone-dependent dopaminergic mechanism. Endocrinology 126: 246–252

    Article  PubMed  CAS  Google Scholar 

  119. Plotsky PM, Gibbs DM, Neill JD (1978) Liquid chromatographic-electrochemical measurement of dopamine in hypophyseal stalk blood of rats. Endocrinology 102: 1887–1894

    Article  PubMed  CAS  Google Scholar 

  120. Ben-Jonathan N (1985) Dopamine: A prolactin inhibiting hormone. Endocr Rev 6: 564–589

    Article  PubMed  CAS  Google Scholar 

  121. Demarest KT, Moore KE (1979) Lack of a high affinity transport system for dopamine in the median eminence and posterior pituitary. Brain Res 171: 545–551

    Article  PubMed  CAS  Google Scholar 

  122. Annunziato L, Weiner RI (1980) Characteristics of dopamine uptake and 3, 4-dihydroxyphenylacetic acid (DOPAC) formation in the dopaminergic terminals of the neurointermediate lobe of the pituitary gland. Neuroendocrinology 31: 8–12

    Article  PubMed  CAS  Google Scholar 

  123. Davis MD, Kilts CD (1987) Endogenous dopamine and serotonin release from the explanted rat tuberohypophyseal system: Effects of electrical stimulation and neurotensin. Life Sci 40: 1869–1874

    Article  PubMed  CAS  Google Scholar 

  124. Holzbauer M, Racke K, Muscholl E, Sharman DF (1983) Dopamine release and synthesis in the neurointermediate lobe of the rat hypophysis in vitro after electrical stimulation of the pituitary stalk. Brain Res 277: 47–54

    Article  PubMed  CAS  Google Scholar 

  125. Racke K, Holzbauer M, Cooper TR, Sharman DF (1986) Dehydration increases the electrically evoked dopamine release from the neural and intermediate lobes of the rat hypophysis. Neuroendocrinology 43: 6–11

    Article  PubMed  CAS  Google Scholar 

  126. Shin SH (1980) Physiological evidence for the existence of prolactin releasing factor: Stress-induced prolactin secretion is not linked to dopaminergic receptors. Neuroendocrinology 31: 375–379

    Article  PubMed  CAS  Google Scholar 

  127. Shin SH (1979) Prolactin secretion in acute stress is controlled by prolactin-releasing factor. Life Sci 25: 1829–1836

    Article  PubMed  CAS  Google Scholar 

  128. de Greef WJ, Plotsky PM, Neill JD (1981) Dopamine levels in hypophyseal stalk plasma and prolactin levels in peripheral plasma of the lactating rat: Effects of a simulated suckling stimulus. Neuroendocrinology 32: 229–233

    Article  PubMed  Google Scholar 

  129. Plotsky PM, Neill JD (1982) The decrease in hypothalamic dopamine secretion induced by suckling: Comparison of voltammetric and radioisotopic methods of measurement. Endocrinology 110: 691–596

    Article  PubMed  CAS  Google Scholar 

  130. Boyd AE, III Spencer E, Jackson IMD, Reichlin S (1976) Prolactin-releasing factor (PRF) in porcine hypothalamic extract distinct from TRH. Endocrinology 99: 861–871

    Article  PubMed  CAS  Google Scholar 

  131. Garthwaite TL, Hagen TC (1979) Evidence that serotonin stimulates a prolactin-releasing factor in the rat. Neuroendocrinology 29: 215–220

    Article  PubMed  CAS  Google Scholar 

  132. Murai I, Ben-Jonathan N (1987) Posterior pituitary lobectomy abolishes the suckling-induced rise in prolactin: Evidence for a prolactin-releasing factor in posterior pituitary. Endocrinology 121: 205–211

    Article  PubMed  CAS  Google Scholar 

  133. Smith MA, Vale W (1980) Superfusion of rat anterior pituitary cells attached to Cytodex beads: Validation of a technique. Endocrinology 107: 1425–1431

    Article  PubMed  CAS  Google Scholar 

  134. Aizawa T, Hinkle PM (1985) Thyrotropin-releasing hormone rapidly stimulates a biphasic secretion of prolactin and growth hormone in GH4C1 rat pituitary tumor cells. Endocrinology 116: 73–82

    Article  PubMed  CAS  Google Scholar 

  135. Hyde JF, Ben-Jonathan N (1989) The posterior pituitary contains a potent prolactin-releasing factor: in vivo studies. Endocrinology 125: 736–741

    Article  PubMed  CAS  Google Scholar 

  136. Hyde JF, Ben-Jonathan N (1988) Characterization of prolactin-releasing factor in the rat posterior pituitary. Endocrinology 122: 2533–2539

    Article  PubMed  CAS  Google Scholar 

  137. Schmale H, Richter D (1984) Single base deletion in the vasopressin gene is the cause of diabetes insipidus in brattleboro rats. Nature 308: 705–708

    Article  PubMed  CAS  Google Scholar 

  138. Pickering BT, North WG (1982) Biochemical and functional aspects of magnocellular neurons and hypothalamic diabetes insipidus. Ann NY Acad Sci 394: 72–81

    Article  PubMed  CAS  Google Scholar 

  139. Hyde JF, North WG, Ben-Jonathan N (1989) The vasopressin-associated glycopeptide is not a prolactin-releasing factor: Studies with lactating brattleboro rats. Endocrinology 125: 35–40

    Article  PubMed  CAS  Google Scholar 

  140. Laudon M, Hyde JF, Ben-Jonathan N (1989) Ontogeny of prolactin releasing and inhibiting activities in the posterior pituitary of male rats. Neuroendocrinology 50: 644–649

    Article  PubMed  CAS  Google Scholar 

  141. Cronin MJ, Faure N, Martial JA, Weiner RI (1980) Absence of high affinity dopamine receptors in GH3 cells: A prolactin-secreting clone resistant to the inhibitory action of dopamine. Endocrinology 106: 718–723

    Article  PubMed  CAS  Google Scholar 

  142. Hyde JF, Murai I, Ben-Jonathan N (1988) Differential effects of pituitary stalk-section on posterior pituitary and hypothalamic contents of prolactin-releasing factor, oxytocin, dopamine and β-endorphin. Neuroendocrinology 48: 314–319

    Article  PubMed  CAS  Google Scholar 

  143. Autelitano DJ, Clements JA, Nikolaidis I, Canny BJ, Funder JW (1987) Concomitant dopaminergic and glucocorticoid control of pituitary proopiomelanocortin messenger ribonucleic acid and β-endorphin levels. Endocrinology 121: 1689–1696

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ben-Jonathan, N. (1990). Prolactin Releasing and Inhibiting Factors in the Posterior Pituitary. In: Müller, E.E., MacLeod, R.M. (eds) Neuroendocrine Perspectives. Neuroendocrine Perspectives, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3446-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3446-3_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8014-9

  • Online ISBN: 978-1-4612-3446-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics