Chapter 2

  • Asuman Güven Aksoy
  • Mohamed A. Khamsi
Part of the Universitext book series (UTX)


Let (A i ) i єI be a family of sets and let U be an ultrafilter on I. By \(\mathop \prod \limits_{i \in I}\) A i we mean the cartesian product of the sets (A i ) i єI; consider the relation ~ u on \(\mathop \prod \limits_{i \in I}\) A i defined by:
$$\left( {{a_i}} \right){ \sim _u}\left( {{b_i}} \right){\text{ if and only if }}\left\{ {i:{a_i} = {b_i}} \right\} \in u$$


Banach Space Canonical Basis Convergent Subsequence Separable Banach Space Spreading Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Asuman Güven Aksoy
    • 1
  • Mohamed A. Khamsi
    • 2
  1. 1.Department of MathematicsClaremont McKenna CollegeClaremontUSA
  2. 2.Department of Mathematical SciencesUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations