The Shapes of Random Walks with Fixed End-to-End Distance

  • A. Beldjenna
  • J. Rudnick
  • G. Gaspari
Conference paper
Part of the Woodward Conference book series (WOODWARD)

Abstract

Fixed length random walks embedded in d spatial dimensions are discussed. As a representation of polymers, they correspond to long chain molecules whose heads and tails are fixed in space. An exact analytical expression for the asphericity is presented that is valid in arbitrary spatial dimensionality. We also present expressions for the average principal radii of gyration to order 0(1/d). These expressions recover the results for both unrestricted open and closed random walks.

Keywords

Anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuhn, W., Kolloid Z., 68, 2, (1934).CrossRefGoogle Scholar
  2. 2.
    Mandelbrot, B.B., 1983. The Fractal Geometry of Nature, ( Freeman, New York).Google Scholar
  3. 3.
    1977. For an excellent introductory discussion of general theoretical notions regarding the shapes of polymers and a review of earlier work, see K. Solc, Polym. News, 4, 67.Google Scholar
  4. 4.
    Bishop, M. and Michael, J.P.J., 1985. J. Chem. Phys., 82, 1059.ADSCrossRefGoogle Scholar
  5. 5.
    Bishop, M. and Michael, J.P.J., 1986. J. Chem. Phys., 85, 1074.ADSCrossRefGoogle Scholar
  6. 6.
    Bishop, M. and Saltiel, C., 1986. J. Chem. Phys.,85, 6728, and references therein.ADSCrossRefGoogle Scholar
  7. 7.
    Van Vliet, J.H. and ten Brinke, G., In press.Google Scholar
  8. 8.
    Aronovitz J., and Nelson, D.R., 1986. J. Physique, 47, 1445.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Rudnick, J., and Gaspari, G., 1986. J. Phys. A: Math. Gen., 19, L191.MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Theodorou, D.N. and Suter, U., 1985. Macromol., 18, 1206.ADSCrossRefGoogle Scholar
  11. 11.
    Aronovitz, J. and Stephen, M.J., 1987. J. Phys. A: Math. Gen., 20, 2539.MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Gaspari, G., Rudnick, J., and Beldjenna, A., 1987. J. Phys. A: Math. Gen., 20, 3393.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Rudnick, J., Beldjenna, A. and Gaspari, G., 1987. J. Phys. A: Math. Gen., 20, 971.MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Beldjenna A., UnpublishedGoogle Scholar
  15. 15.
    Solc K. and H. Stockmeyer, J. Chem. Phys., 54, 2756 (1971).ADSCrossRefGoogle Scholar
  16. K. Solc, ibid, 55, 335 (1971).ADSGoogle Scholar
  17. 16.
    Fixman, M., 1962. J. Chem. Phys., 36, 306.ADSCrossRefGoogle Scholar
  18. 17.
    Forsman, W. and Hughes, R., 1963. J. Chem. Phys., 38, 2118.ADSCrossRefGoogle Scholar
  19. 18.
    Kramers, H.A., 1946. J. Chem. Phys., 14, 415.ADSCrossRefGoogle Scholar
  20. 19.
    Flory, P., 1971. Principles of Polymer Physics,(Ithaca, NY: Cornell University Press)Google Scholar
  21. 20.
    Kuhn, W., 1936. Kolloid Z., 76, 258.CrossRefGoogle Scholar
  22. 21.
    Kuhn, W., 1939. Kolloid Z., 87, 3.CrossRefGoogle Scholar
  23. 22.
    Beldjenna, A., Rudnick, J. and Gaspari, G., in preparation.Google Scholar
  24. 23.
    Zimm, B.H. and Stockmeyer, W., 1949. J. Chem. Phys., 17, 1301.ADSCrossRefGoogle Scholar
  25. 24.
    Beldjenna, A., Rudnick, J. and Gaspari, G., in preparation.Google Scholar
  26. 25.
    Rudnick, J., and Gaspari, G., 1987. Science,237–384.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • A. Beldjenna
    • 1
  • J. Rudnick
    • 1
  • G. Gaspari
    • 2
  1. 1.Department of PhysicsUniversity of California at Los AngelesLos AngelesUSA
  2. 2.Department of PhysicsUniversity of California at Santa CruzSanta CruzUSA

Personalised recommendations