Lagrangian Particle Kinematics in Three-Dimensional Convection

  • D. D. Holm
  • Y. Kimura
  • J. C. Scovel
Part of the Woodward Conference book series (WOODWARD)

Abstract

Various incompressible stationary velocity fields can be classified using the concept of toroidal-poloidal decomposition for divergenceless vector fields. In particular, classification and visualization are made for some basic flows applying to Rayleigh-Bénard convection.

Keywords

Convection Vorticity Advection Haas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability ( Clarendon, Oxford, 1961 ).Google Scholar
  2. 2.
    T. Dombre, U. Frisch, J.M. Greene, M. Hénon, A. Mehr, and A.M. Soward, J. Fluid Mech., 167 353 (1986).Google Scholar
  3. 3.
    W. Arter, Phys. Lett. 97A 171 (1983).MathSciNetCrossRefGoogle Scholar
  4. 4.
    G. Veronis, J. Fluid Mech., 31 113 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    A. Thyagaraja and F.A.Haas, Phys. Fluids 28 1005 (1985).Google Scholar
  6. 6.
    J.C. Scovel, Symplectic Numerical Integration of Hamiltonian Systems, to appear in Proc. MSRI Workshop on the Geometry of Hamiltonian Systems, Berkley, June 1989.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • D. D. Holm
    • 1
  • Y. Kimura
    • 2
  • J. C. Scovel
    • 3
  1. 1.Theoretical Division and Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Center for Nonlinear Studies and Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Computing and Communications Division and Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations