The Omentum pp 45-61 | Cite as

Angiogenesis and the greater omentum

  • Rhodri Williams


Angiogenesis is the formation of new blood vessels, a phenomenon that should be distinguished from the elongation and enlargement of existing vessels, although both frequently combine to increase the blood supply or vascularity of a tissue. Angiogenesis is indispensable for the growth of tissues and organs, and is a feature of a number of normal and pathological conditions. The term was first used to describe vascular development in the placenta. Other examples of angiogenesis include the reconstitution of the uterine lining after menstruation, wound healing, chronic inflammation, diabetic retinopathy, immunological reactions, thrombosis and neoplasia.


Mast Cell Endothelial Cell Proliferation Capillary Endothelial Cell Great Omentum Ciba Foundation Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Morison R. On functional aspects of the greater omentum. Br J Med 1906; 1: 76–8.CrossRefGoogle Scholar
  2. (2).
    de Renzi E, Boeri G. Das netz als schutzorgan. Berl Klin Wschr 1903; 40: 773–6.Google Scholar
  3. (3).
    Ellis H. The aetiology of post-operative peritoneal adhesions (an experimental study). Br J Surg 1962; 50: 10–16.PubMedCrossRefGoogle Scholar
  4. (4).
    Ellis H. The causes and prevention of intestinal adhesions. Br J Surg 1982; 69: 241–3.PubMedCrossRefGoogle Scholar
  5. (5).
    Myllarniemi H, Karppinen V. Vascular pattern of peritoneal adhesions. Br J Surg 1968; 55: 605–8.PubMedCrossRefGoogle Scholar
  6. (6).
    McLachlin AD, Denton AD. Omental protection of intestinal anastomoses. Am J Surg 1973; 125: 134–40.PubMedCrossRefGoogle Scholar
  7. (7).
    Cheng XX. Repair of the wound surface with omentum homograft and skin autograft: preliminary report on an animal experiment. Chung Hua Wai Ko Tsa Chih 1983; 21: 367–8.PubMedGoogle Scholar
  8. (8).
    Pittam MR, Lamont PM, Thomas JM. Omental viability and incisional herniation after omental transposition for the repair of chest wall defects. Br J Surg 1988; 75: 72.CrossRefGoogle Scholar
  9. (9).
    Casten DF, Alday ES. Omental transfer for revascularization of the extremeties. Surg Gynecol Obstet 1971; 132: 301–4.PubMedGoogle Scholar
  10. (10).
    Hoshino S, Hamada O, Iwaya F, Takahira H, Honda K. Omental transplantation for chronic occlusive diseases. Int Surg 1979; 64: 21–9.PubMedGoogle Scholar
  11. (11).
    Micheau Ph, Moreau JP, Chavoin JP, Chiotasso P, Costagliola M, Rumeau JL, Blasco A, Vogoni F. Epiploon et revascularisation: Etude experimentale chez le chien. Perspectives cliniques. J Chir (Paris) 1981; 118: 197–205.Google Scholar
  12. (12).
    Hoshino S, Nakayama K, Igari T, Honda K. Long-term results of omental transplantation for chronic occlusive arterial diseases. Int Surg 1983; 68: 47–50.PubMedGoogle Scholar
  13. (13).
    Ming-shan N, Xiong-wei Z, Kang-min X, Ya-ping Z. Free omental autotransplant to brain surface in ischemic cerebrovascular disease. Clin Med J 1983; 96: 787–9.Google Scholar
  14. (14).
    Erol OO, Spira M. Development and utilization of a composite island flap employing omentum: experimental investigation. Plast Reconstr Surg 1980; 65: 405–18.PubMedCrossRefGoogle Scholar
  15. (15).
    Jurkiewicz MJ, Nahai F. The omentum. Its use as a free vascularised graft for reconstruction in the head and neck. Ann Surg 1982; 195: 756–65.PubMedCrossRefGoogle Scholar
  16. (16).
    Nelson RJ, White RA, Hirose FM. Neovascularity of a tracheal prosthesis/tissue complex. J Thorac Cardiovasc Surg 1983; 86: 800–8.PubMedGoogle Scholar
  17. (17).
    Barnes WA, Redo SF, Ogata K. Replacement of portion of canine oesophagus with composite prosthesis and greater omentum. J Thorac Cardiovasc Surg 1972; 64: 892–6.PubMedGoogle Scholar
  18. (18).
    Gardiner RA, Weedon D, Sing J, Splatt AJ. Replacement of ureteric segments by intubated neo-ureterotomies (modified Davis technique) using autologous bladder and omentum in dogs. Br J Urol 1984; 56: 354–8.PubMedCrossRefGoogle Scholar
  19. (19).
    Yasunami Y, Lacy PE, Finke EH. A new site for islet transplantation: a peritoneal-omental pouch. Transplantation 1983; 36: 181–2.PubMedCrossRefGoogle Scholar
  20. (20).
    Patel J, Williams JS, Shmigel B, Hinshaw JR. Preservation of splenic function by autotransplantation of traumatized spleen in man. Surg Gynecol Obstet 1984; 158: 591–2.Google Scholar
  21. (21).
    Sasaki K. Neeovascularization in the splenic autograft transplanted into rat omentum as studied by scanning electron microscopy of vascular casts. Virchows Arch [Pathol Anat] 1986; 409: 325–34.CrossRefGoogle Scholar
  22. (22).
    Umar MH, van Griensven LJLD. Mesenteric haemopoietic colonies: occurrence in BALB/c mice after transplantation of syngeneic normal or leukemic haemopoietic cells. Exp Haematol 1977; 5: 281–90.Google Scholar
  23. (23).
    Goldsmith HS, Griffith AL, Kupfermann A, Catsimpoolas A. Lipid angiogenic factor from omentum. JAMA 1984; 252: 2034–6.PubMedCrossRefGoogle Scholar
  24. (24).
    Goldsmith HS, Griffith AL, Catsimpoolas N. Increased vascular perfusion after administration of an omental lipid fraction. Surg Gynecol Obstet 1986; 162: 579–83.PubMedGoogle Scholar
  25. (25).
    Auerbach R. Ontogeny of the vascular/immune system of the mouse omentum. 2nd Int Symposium: Surgery & biology of greater omentum, 1986.Google Scholar
  26. (26).
    Rubesin SE, Levine MS. Omental cakes: colonic involvement by omental metastases. Radiology 1985; 154: 593–6.PubMedGoogle Scholar
  27. (27).
    Moreau-Gachelin F, Wendling F, Bucau-Varlet P, Charon M, Tambourin P. Detection of tumorigenic cells in Friend virus-infected mice: an in vivo methodological investigation. J Natl Cancer Inst 1981; 66: 1121–6.PubMedGoogle Scholar
  28. (28).
    Chalmers PJ, Newing RK. Influence of omentum transposition on experimental tumours. J Surg Oncol 1986; 32: 135–7.PubMedCrossRefGoogle Scholar
  29. (29).
    Strauli P, Haemmerli G. Interaction of locomotive and lytic activities of tumor cells in invasion. In: Grundmann E, ed. Metastatic tumour growth. Stuttgart: Fischer, 1980; 1–9.Google Scholar
  30. (30).
    Green JA, Williams AE. The relationship between inflammatory responses and WBP1 tumour cell attachment to the rat omentum. Eur J Cancer 1978; 14: 1153–4.PubMedCrossRefGoogle Scholar
  31. (31).
    Tobai S, Kawaguchi T, Asahina S, Nakamura K. Electron microscopic studies of tumor invasion in the rat omentum. Gan To Kagaku Ryoho 1981; 8 (Suppl): 107–11.Google Scholar
  32. (32).
    Wheatley DN, Ambrose EJ. Tumour cell invasion from transplantable ascites tumours into host tissues. Br J Cancer 1964; 18: 730–42.PubMedCrossRefGoogle Scholar
  33. (33).
    Kodama M, Amo H, Kodama K. Survival times of mice bearing Ehrlich ascites tumour, with special reference to the effect of hydrocortisone administration. J Natl Cancer Inst 1970; 44: 1055–63.PubMedGoogle Scholar
  34. (34).
    Folkman J. Angiogenesis and its inhibitors. In: De Vita VT, Hellman S, Rosenberg SA, eds. Important advances in oncology, 1985. Philadelphia: JB Lippincott, 1985.Google Scholar
  35. (35).
    Hobson B, Denekamp J. Endothelial proliferation in tumours and normal tissues; continuous labelling studies. Br J Cancer 1984; 49: 405–13.PubMedCrossRefGoogle Scholar
  36. (36).
    Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133: 275–88.PubMedCrossRefGoogle Scholar
  37. (38).
    Kurachi K, Davie EW, Strydom DJ, Riordan JF, Vallee BL. Sequence of the cDNA and gene for angiogenic, a human angiogenesis factor. Biochemistry 1985; 24: 5494–9.PubMedCrossRefGoogle Scholar
  38. (38).
    Fett JW, Strydom DJ, Lobb RR, et al. Isolation and characterization of angiogenin, an angiogenin protein from human carcinoma cells. Biochemistry 1985; 24: 5480–6.PubMedCrossRefGoogle Scholar
  39. (39).
    Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977; 14: 53–65.PubMedCrossRefGoogle Scholar
  40. (40).
    Iwaguchi T, Sakurai Y. Peritoneal bleeding in normal rat induced by lyophilized powder of tumor cells. Gann 1970; 61: 89–91.PubMedGoogle Scholar
  41. (41).
    Aspsestrand F, Lexow P, Andersen JIA. The angiographic features of tumor infiltration of the omentum. Radiologe 1985; 25: 488–9.Google Scholar
  42. (42).
    Deutsch V, Adar R, Mozes M. Angiography of the greater omentum. Am J Radiol 1971; 113: 174–80.Google Scholar
  43. (43).
    Ryan TJ, Barnhill RL. Physical factors and angiogenesis. In: Nugent J, O’Connor M, eds. Development of the vascular system. Ciba Foundation Symposium 100. London: Pitman, 1983.Google Scholar
  44. (44).
    Raju KS, Alessandri G, Gullino PM. Characterization of a chemoattractant for endothelium induced by angiogenesis effectors. Cancer Res 1984; 44: 1579–84.PubMedGoogle Scholar
  45. (45).
    Beelen RHJ, Fluitsma DM, Hoefsmit ECM. The cellular composition of omentum milky spots and the ultrastructure of milky spot macrophages and reticulum cells. J Reticuloendoth Soc 1980; 28: 585–9.Google Scholar
  46. (46).
    Dux K, Rouse RV, Kyewski B. Composition of the lymphoid cell populations from omental milky spots during the immune response in C57BL/Ka mice. Eur J Immunol 1986; 16: 1029–32.PubMedCrossRefGoogle Scholar
  47. (47).
    Yong LC, Watkins S, Wilhelm DL. The mast cell: Distribution and maturation in the peritoneal cavity of the adult rat. Pathology 1975; 7: 307–18.PubMedCrossRefGoogle Scholar
  48. (48).
    Greenburg GB, Hunt TK. The proliferative response in vitro of vascular endothelial and smooth muscle cells exposed to wound fluids and macrophages. J Cell Physiol 1978; 97: 353–60.PubMedCrossRefGoogle Scholar
  49. (49).
    Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue?—GHA Clowes memorial award lecture. Cancer Res 1986; 46: 467–73.PubMedGoogle Scholar
  50. (50).
    Alexander P, Eccles SA, Gauci CLL. The significance of macrophages in human and experimental tumors. Ann N Y Acad Sci 1976; 276: 124–33.PubMedCrossRefGoogle Scholar
  51. (51).
    Polverini PJ, Leibovich SJ. Induction of neovascularization in vivo and endothelial cell proliferation in vitro induced by tumor associated macrophages. Lab Invest 1984; 51: 635–42.PubMedGoogle Scholar
  52. (52).
    Koch AE, Polverini PJ, Leibovich J. Induction of neovascularization by activated human monocytes. J Leuk Biol 1986; 39: 233–8.Google Scholar
  53. (53).
    Nathan CF, Murray HW, Cohn ZA. The macrophage as an effector cell. N Engl J Med 1980; 303: 622–6.PubMedCrossRefGoogle Scholar
  54. (54).
    de Souza GEP, Ferreira SH. Blockade of antimacrophage serum of the migration of PMN neutrophils into the inflamed peritoneal cavity. Agents Actions 1985; 17: 97–103.PubMedCrossRefGoogle Scholar
  55. (55).
    Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 1987; 329: 630–2.PubMedCrossRefGoogle Scholar
  56. (56).
    Frater-Schroder M, Risau W, Hallman R, Gautschi P, Bohlen P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 1981; 84: 5277–81.CrossRefGoogle Scholar
  57. (57).
    Knighton DR, Ordesson S, Banda M, Werb Z, Hunt TK. Hypoxia stimulates production of angiogenesis factor, plasminogen activator, and growth factor by rabbit bone marrow macrophages. Fed Proc 1982; 41: 270.Google Scholar
  58. (58).
    Sidky YA, Auerbach R. Lymphocyte induced angiogenesis: a quantitative and sensitive assay of the graft-vs.-host reaction. J Exp Med 1975; 141: 1084–110.PubMedCrossRefGoogle Scholar
  59. (59).
    Roehm NW, Sidky Y A, Auerbach R. Lyt phenotype analysis of the effector cells responsible for evoking lymphokine-induced angiogenesis (LIA). Cell Immunol 1981; 63: 272–8.PubMedCrossRefGoogle Scholar
  60. (60).
    Watt SL, Auerbach R. A mitogenic factor for endothelial cells obtained from mouse secondary mixed leucocyte cultures. J Immunol 1986; 136: 197–202.PubMedGoogle Scholar
  61. (61).
    Sidky Y A, Auerbach R. Lymphocyte-induced angiogenesis in tumor-bearing mice. Science 1976; 192: 1237–8.PubMedCrossRefGoogle Scholar
  62. (62).
    Auerbach R, Alby L, Morrissey LW, Tu M, Joseph J. Expression of organ-specific antigens on capillary endothelial cells. Microvasc Res 1985; 29: 401–11.PubMedCrossRefGoogle Scholar
  63. (63).
    Kessler DA, Langer RS, Pless NA, Folkman J. Mast cells and tumor angiogenesis. Int J Cancer 1976; 18: 703–9.PubMedCrossRefGoogle Scholar
  64. (64).
    Simionescu M, Simionescu N. Organization of cell junctions in the peritoneal mesothelium. J Cell Biol 1977; 74: 98–110.PubMedCrossRefGoogle Scholar
  65. (65).
    Azizkhan RG, Azizkhan JC, Zetter BR, Folkman J. Mast cell heparin stimulates migration of capillary endothelial cells. J Exp Med 1980; 152: 931–44.PubMedCrossRefGoogle Scholar
  66. (66).
    Fraser RA, Simpson JG. Role of mast cells in experimental tumour angiogenesis. In: Nugent J, O’Connor M, eds. Development of the vascular system. Ciba Foundation Symposium 100. London: Pitman, 1983.Google Scholar
  67. (67).
    Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982; 297:307–12.PubMedCrossRefGoogle Scholar
  68. (68).
    Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsburn M. Heparin affinity: Purification of a tumor-derived capillary endothelial cell growth factor. Science 1984; 223: 1296–9.PubMedCrossRefGoogle Scholar
  69. (69).
    Maciag T, Newman T, Friesel R, Schreiber AB. Heparin binds endothelial cell growth factor. Science 1984; 225: 932–5.PubMedCrossRefGoogle Scholar
  70. (70).
    Ziche M, Jones J, Gullino PM. Role of prostaglandin El and copper in angiogenesis. J Natl Cancer Inst 1982; 69: 475–81.PubMedGoogle Scholar
  71. (71).
    Courtoy PJ, Boyles J. Fibronectin in the micro vasculature: localization in the pericyte-endothelial interstitium. J Ultrastruct Res 1983; 83: 258–73.PubMedCrossRefGoogle Scholar
  72. (72).
    Ungari S, Katari RJ, Alessandri G, Gullino PM. Cooperation between fibronectin and heparin in the mobilisation of capillary endothelium. Invas Metast 1985; 5: 193–205.Google Scholar
  73. (73).
    Schweigerer L, Neuf eld G, Friedman J, Abraham J A, Fiddes JC, Gopodarowicz D. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 1987; 325: 257–9.PubMedCrossRefGoogle Scholar
  74. (74).
    Schreiber AB, Winkler ME, Derynck R. Transforming growth factor-alpha: A more potent angiogenic mediator than epidermal growth factor. Science 1986; 232: 1250–3.PubMedCrossRefGoogle Scholar
  75. (75).
    Heuser LS, Taylor SH, Folkman J. Prevention of carcinomatosis and bloody malignant ascites in the rat by an inhibitor of angiogenesis. J Surg Res 1984; 36: 244–50.PubMedCrossRefGoogle Scholar
  76. (76).
    Majewski S, Kaminski MJ, Szmurlo A, Kaminska G, Malejczyk J. Inhibition of rumour-induced angiogenesis by systemically administered protamine sulphate. Int J Cancer 1984; 33: 831–3.PubMedCrossRefGoogle Scholar
  77. (77).
    Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 1984; 51: 624–34.PubMedGoogle Scholar
  78. (78).
    Shubik P, Feldman R, Garcia H, Warren BA. Vascularization induced in the cheek pouch of the Syrian hamster by tumor and non-tumor substances. J Natl Cancer Inst 1976; 57: 769–74.PubMedGoogle Scholar
  79. (79).
    Ziche M, Ruggiero M, Pasquali F, Chiarugi VP. Effects of cortisone with and without heparin on angiogenesis induced by prostaglandin E1 and by S180 cells, and on growth of murine transplantable tumours. Int J Cancer 1985; 35: 549–52.PubMedCrossRefGoogle Scholar
  80. (80).
    Warren BA. Tumor Angiogenesis. In: Peterson HI, ed. Tumor blood circulation: Angiogenesis, vascular pathology, and blood flow of experimental and human tumors. Boca Raton, Florida: CRC Press, 1979.Google Scholar
  81. (81).
    Glaser BM, Kalebic T, Garbisa S, Connor TB Jr, Liotta LA. Degradation of the basement membrane components by vascular endothelial cells: role in neovascularization. In: Nugent J, O’Connor M, eds. Development of the vascular system. Ciba Foundation Symposium 100. London: Pitman, 1983.Google Scholar
  82. (82).
    McAuslan BR, Hannan GN, Reilly W. Signals causing change in morphological phenotype, growth mode, and gene-expression of vascular endothelial cells. J Cell Physiol 1982; 112: 96–106.PubMedCrossRefGoogle Scholar
  83. (83).
    Folkman J, Taylor S, Spillberg C. The role of heparin in angiogenesis. In: Nugent J, O’Connor M, eds. Development of the vascular system. Ciba Foundation Symposium 100. London: Pitman, 1983.Google Scholar
  84. (84).
    Hammersen E, Endrich B, Messmer K. The fine structure of tumor vessels. 1. Participation of non-endothelial cells in tumor angiogenesis. Int J Microcirc: Clin Exp 1985; 4: 31–43.Google Scholar
  85. (85).
    Form DM, Pratt BM, Madri JA. Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. Lab Invest 1986; 55: 521–30.PubMedGoogle Scholar
  86. (85).
    Paweletz N, Liebrich W. Studies on coexistence and intracellular communication. Scanning electron microscopy of early stages of co-culturing of normal mesothelial cells and mouse ascites tumor cells in vitro. Virchows Arch B Cell Pathol 1976; 21:17–29.Google Scholar
  87. (87).
    Orlidge A, D’Amore PA. Pericyte and smooth muscle modulation of endothelial cell proliferation. J Cell Biol 1986; 103: 471a.Google Scholar
  88. (88).
    Reinhold HS, Van den Berg-Blok. Vascularization of experimental tumours. In: Nugent J, O’Connor M, eds. Development of the vascular system. Ciba Foundation Symposium 100. London: Pitman, 1983.Google Scholar
  89. (89).
    Burger PC, Chandler DB, Klintworth GK. Corneal neovascularization as studied by scanning electron microscopy of vascular casts. Lab Invest 1983; 48: 169–80.PubMedGoogle Scholar
  90. (90).
    Williams RJL, White H. Use of the lectin, Dolichos biflorus agglutinin as an endothelial cell marker in studying microvascular changes associated with tumour angiogenesis. Eur J Surg Oncol 1987; 13: 278–9.Google Scholar
  91. (91).
    Ponder BAJ, Wilkinson MM. Organ-related differences in binding of Dolichos biflorus agglutinin to vascular endothelium. Dev Biol 1983; 96: 535–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Rhodri Williams
    • 1
  1. 1.St Mary’s HospitalLondonUK

Personalised recommendations