Advertisement

Structure and Functions of Tobacco Mosaic Virus RNA

  • Yoshimi Okada
  • Tetsuo Meshi
  • Yuichiro Watanabe

Abstract

Tobacco mosaic virus (TMV) is one of the well-characterized plant viruses. The genome of TMV is a positive-sense, single-stranded RNA and encodes at least three non-structural proteins (130K, 180K and 30K proteins) and a coat protein (Goelet et al., 1982; Ohno et al., 1984). The functions of non-structural proteins are not well understood at the molecular level. Recently, in vitro expression systems that allow production of infectious TMV RNAs from cloned full-length cDNA copies have been established (Dawson et al., 1986; Meshi et al., 1986) and as a result reverse genetics approaches have become possible for TMV research. We have constructed several kinds of TMV mutants in vitro to identify the function of TMV-coded proteins and the genomic RNA.

Keywords

Coat Protein Tobacco Mosaic Virus Coat Protein Gene Tobacco Protoplast Cucumber Green Mottle Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boccara, M., Hamilton, W.D.O., and Baulcombe, D.C. (1986). The organization and interviral homologies of genes at the 3′ end of tobacco rattle virus RNA 1. EMBO J. 5, 223–230.PubMedGoogle Scholar
  2. Bujarski, J.J., Ahlquist, P., Hall, T.C., Dreher, T.W., and Kaesberg, P. (1986). Modulation of replication, aminoacylation and adenylation in vitro and infectivity in vivo of BMV RNAs containing deletions within the multifunctional 3′ end. EMBO J. 5, 1769–1774.PubMedGoogle Scholar
  3. Cornelissen, B.J.C., Linthorst, H.J.M., Brederode, F.T., and Bol, J.F. (1986). Analysis of the genome structure of tobacco rattle virus strain PSG. Nucleic Acids Res. 14, 2157–2169.PubMedCrossRefGoogle Scholar
  4. Culver, J.N., and Dawson, W.O. (1989). Point mutations in the coat protein gene of tobacco mosaic virus induce hypersensitivity in Nicotiana sylvestris. Mol. Plant-Microbe Interact. 2, 209–213.CrossRefGoogle Scholar
  5. Dawson, W.O., Beck, D.L., Knorr, D.A., and Grantham, G.L. (1986). cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts. Proc. Natl. Acad. Sci. USA 83, 1832–1836.PubMedCrossRefGoogle Scholar
  6. Dawson, W.O., Bubrick, P., and Grantham, G.L. (1988). Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology. Phytopathology 78, 783–789.CrossRefGoogle Scholar
  7. Deom, C.M., Oliver, M.J., and Beachy, R.N. (1987). The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 389–394.PubMedCrossRefGoogle Scholar
  8. Dorokhov, Y.L., Alexandrova, N.M., Miroshnichenko, N.A., and Atabekov, J.G. (1984). The informosome-like virus specific ribonucleoprotein (vRNP) may be involved in the transport of tobacco mosaic virus infection. Virology 137, 127–134.PubMedCrossRefGoogle Scholar
  9. Dreher, T.W., and Hall, T.C. (1988). Mutational analysis of the sequence and structural requirements in brome mosaic virus for minus strand promoter activity. J.Mol.Biol. 201, 31–40.PubMedCrossRefGoogle Scholar
  10. Dreher, T.W., Rao, A.L.N., and Hall, T.C. (1989). Replication in vivo of mutant brome mosaic virus RNAs defective in aminoacylation. J.Mol.Biol. 206, 425–438.PubMedCrossRefGoogle Scholar
  11. Fraser, R.S.S. (1985). Mechanisms of Resistance to Plant Disease, Martinus Nijhoff/Junk, Dordrecht.Google Scholar
  12. Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C., and Wilson, T.M.A. (1987a). The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids. Res. 15, 3257–3273.PubMedCrossRefGoogle Scholar
  13. Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C., and Wilson, T.M.A. (1987b). In vivo uncoating and efficient expression of foreign mRNAs packaged in TMV-like particles. Science 236, 1122–1124.PubMedCrossRefGoogle Scholar
  14. Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C., and Wilson, T.M.A. (1988). Mutational analysis of the tobacco mosaic virus 5′-leader for altered ability to enhance translation. Nucleic Acids Res. 16, 833–893.CrossRefGoogle Scholar
  15. Goelet, P., Lomonossoff, G.P., Butler, P.J.G., Akam, M.E., Gait, M.J., and Kam, J. (1982). Nucleotide sequence of tobaco mosaic virus RNA. Proc. Natl. Acad. Sci. USA 79, 5818–5822.PubMedCrossRefGoogle Scholar
  16. Haseloff, J., Goelet, P., Zimmern, D., Ahlquist, P., Dasgupta, R., and Kaesberg, P. (1984). Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization. Proc. Natl. Acad. Sci. USA 81, 4358–4362.PubMedCrossRefGoogle Scholar
  17. Hunter, T.R., Hunt, T., Knowland, J., and Zimmern, D. (1976). Messenger RNA for the coat protein of tobacco mosaic virus. Nature 260, 759–764.PubMedCrossRefGoogle Scholar
  18. Ishikawa, M., Meshi, T., Motoyoshi, F., Takamatsu, N., and Okada, Y. (1986). In vitro mutagenesis of the putative replicase genes of tobacco mosaic virus. Nucleic Acids Res. 14, 8291–8305.PubMedCrossRefGoogle Scholar
  19. Ishikawa, M., Meshi, T., Watanabe, Y., and Okada, Y. (1988). Replication of chimeric tobacco mosaic viruses which carry heterologous combinations of replicase genes and 3′ noncoding regions. Virology 164, 290–293.PubMedCrossRefGoogle Scholar
  20. Kamer, G., and Argos, P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 12, 7269–7282.PubMedCrossRefGoogle Scholar
  21. Knorr, D.A., and Dawson, W.O. (1988). A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc. Natl. Acad. Sci. USA 85, 170–174.PubMedCrossRefGoogle Scholar
  22. Leonard, D.A., and Zaitlin, M. (1982). A temperature-sensitive strain of tobacco mosaic virus defective in cell-to-cell movement generates an altered viral-encoded protein. Virology 117, 416–424.PubMedCrossRefGoogle Scholar
  23. Meshi, T., Ishikawa, M., Motoyoshi, F., Semba, K., and Okada, Y. (1986). In vitro transcription of infectious RNAs from full-length cDNAs of tobacco mosaic virus. Proc. Natl. Acad. Sci. USA 83, 5043–5047.PubMedCrossRefGoogle Scholar
  24. Meshi, T., Watanabe, Y., Saito, T., Sugimoto, A., Maeda, T., and Okada, Y. (1987). Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J. 6, 2557–2563.PubMedGoogle Scholar
  25. Meshi, T., Motoyoshi, F., Adachi, A., Watanabe, Y., Takamatsu, N., and Okada, Y. (1988). Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. EMBO J. 7, 1575–1581.PubMedGoogle Scholar
  26. Meshi, T., Motoyoshi, F., Maeda, T., Yoshiwoka, S., Watanabe, H., and Okada, Y. (1989). Mutations in the tobacco mosaic virus 30 kD protein gene overcome Tm-2 resistance in tomato. Plant Cell 1, 515–522.PubMedCrossRefGoogle Scholar
  27. Ohno, T., Takamatsu, N., Meshi, T., Okada, Y., Nishiguchi, N., and Kiho, T. (1983). Single amino acid substitution in 30K protein of TMV defective in virus transport function. Virology 131, 255–258.PubMedCrossRefGoogle Scholar
  28. Ohno, T., Aoyagi, M., Yamanashi, Y., Saito, H., Ikawa, S., Meshi, T., and Okada, Y., (1984). Nucleotide sequence of the tobacco mosaic virus (tomato strain) genome and comparison with the common strain genome. J. Biochem. 96, 1915–1923.PubMedGoogle Scholar
  29. Okada, Y., Meshi, T., Watanabe, Y., Ishikawa, M., Saito, T., and Takamatsu, N. (1988). Genetic manipulation of tobacco mosaic virus. Abstracts of 5th International Congress of Plant Pathology in Kyoto, Japan.Google Scholar
  30. Ooshika, I., Watanabe, Y., Meshi, T., Okada, Y., Igano, K., Inuoye, K., and Yoshida, N. (1984). Identification of the 30K protein of TMV by immunoprecipitation with antibodies directed against a synthetic peptide. Virology 132, 71–78.PubMedCrossRefGoogle Scholar
  31. Rietvelt, K., Linschooten, K., Pleij, C.W.A., and Bosch, L. (1984). The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J. 3, 2613–2619.Google Scholar
  32. Rosenberg, A.H., Lade, B.N., Chui, D., Lin, S., Dunn, J.J., and Studier, F.W. (1987). Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125–135.PubMedCrossRefGoogle Scholar
  33. Saito, T., Meshi, T., Takamatsu, N., and Okada, Y. (1987). Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc. Natl. Acad. Sci. USA 84, 6074–6077.PubMedCrossRefGoogle Scholar
  34. Saito, T., Imai, Y., Meshi, T., and Okada, Y. (1988). Interviral homologies of the 30K proteins of tobamoviruses. Virology 167, 653–656.PubMedGoogle Scholar
  35. Saito, T., Yamanaka, K., Watanabe, Y., Takamatsu, N., Meshi, T., and Okada, Y. (1989). Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in tobacco plants with the N gene. Virology 173, 11–20.PubMedCrossRefGoogle Scholar
  36. Saito, T., Yamanaka, K., and Okada, Y. (1990). Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology (In press).Google Scholar
  37. Siegel, A., Zaitlin, M., and Sehgal, O.P. (1962). The isolation of defective tobacco mosaic virus strains. Proc. Natl. Acad. Sci. USA 48, 1845–1851.PubMedCrossRefGoogle Scholar
  38. Studier, F.W., Rosenberg, A.H., and Dunn, J.J. (1989). Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology, (In press).Google Scholar
  39. Takamatsu, N., Ohno, T., Meshi, T. and Okada, Y (1983). Molecular cloning and nucleotide sequence of the 30K and the coat protein cistron of TMV (tomato strain) genome. Nucleic Acids Res. 11, 3767–3778.PubMedCrossRefGoogle Scholar
  40. Takamatsu, N., Ohno, T., Meshi, T., and Okada, Y. (1987). Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J. 6, 307–311.PubMedGoogle Scholar
  41. Tomenius, K., Clapham, D., and Meshi, T. (1987). Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infected with tobacco mosaic virus. Virology 160, 363–371.PubMedCrossRefGoogle Scholar
  42. Tyc, K., Konarska, M., Gross, H.J., and Filipowicz, W. (1984). Multiple ribosome binding to the 5′-terminal leader sequence of TMV RNA. Assembly of an 80S ribosome-mRNA complex at the AUU codon. Eur J.Biochem. 140, 503–511.PubMedCrossRefGoogle Scholar
  43. Van Belkum, A., Abrahams, J.P., Pleij, C.W.A., and Bosch, L. (1985). Five pseudoknots are present at the 204 nucleotide-long 3′ noncoding region of tobacco mosaic virus RNA. Nucleic Acids Res. 13, 7673–7678.PubMedCrossRefGoogle Scholar
  44. Watanabe, T., Emori, Y., Ooshika, I., Meshi, T., Ohno, T., and Okada, Y. (1984). Synthesis of TMV-specific RNAs and proteins at the early stage of infection in tobacco protoplasts: Transient expression of the 30K protein and its mRNA. Virology 133, 18–24.PubMedCrossRefGoogle Scholar
  45. Watanabe, T., Ooshika, I., Meshi, T., and Okada, Y. (1986). Subcellular localization of the 30K protein in TMV-inoculated tobacco protoplasts. Virology 152, 414–420.PubMedCrossRefGoogle Scholar
  46. Watanabe, T., Meshi, T., and Okada, Y. (1987). Infection of tobacco protoplasts with in vitro transcribed tobacco mosaic virus RNA using an improved electroporation method. FEBS Lett. 219, 65–69.CrossRefGoogle Scholar
  47. Yokoe, S., Tanaka, M., Hibasami, H., Nagai, J., and Nakashima, K. (1983). Cross-linking of tobacco mosaic virus RNA and capped polyribonucleotides to 18S rRNA in wheat germ ribosome-mRNA complexes. J.Biochem. 94, 1803–1808.PubMedGoogle Scholar
  48. Zimmern, D., and Hunter, T., (1983). Point mutation in the 30K open reading frame of TMV implicated in temperature-sensitive assembly and local lesion spreading of mutant Ni 2519. EMBO J. 2, 1893–1900.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Yoshimi Okada
    • 1
  • Tetsuo Meshi
    • 1
  • Yuichiro Watanabe
    • 1
  1. 1.Department of Biophysics and Biochemistry, Faculty of ScienceUniversity of TokyoHongo, TokyoJapan

Personalised recommendations