A New Geopotential Model Tailored to Gravity Data in Europe

  • T. Bašić
  • H. Denker
  • P. Knudsen
  • D. Solheim
  • W. Torge
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 103)

Abstract

The European north-south GPS traverse was established to control and improve the European geoid. Comparisons of GPS and levelling data with different geoid computations show a strong slope (1.5 m/700 km) between Denmark and Norway. This slope was suspected to be caused by bad quality of the up to now available 6′ × 10′ gravity values for Scandinavia. Therefore an updated set of 0.5° × 0.5° mean free-air gravity anomalies was calculated for Scandinavia. The new geopotential model (IFE88E2) has been calculated using this new set of 0.5° × 0.5° mean free-air gravity anomalies merged with other available 0.5° × 0.5° mean values for Europe. The calculation of the tailored model, complete to degree and order 360, is based on the OSU86F coefficient set, that was used as a start model. The RMS value of the differences between the 6715 mean values and the model derived values decreased from 15.8 mgal to 6.0 mgal for OSU86F resp. IFE88E2. The magnitude of residual point free-air anomalies relative to OSU86F and IFE88E2 were evaluated in 1495 points in Scandinavia. The RMS values of the differences were 23.4 mgal and 18.5 mgal respectively. Especially comparisons of the two models with GPS/levelling data in Europe show an improved accuracy of the IFE88E2 model. The RMS value of the differences relative to OSU86F is 0.774 m and decreases to 0.322 m for IFE88E2. Furthermore, the slope between Denmark and Norway has almost disappeared.

Keywords

Europe Editing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bašić, T. (1989). Untersuchungen zur regionalen Geoidbestimmung mit ”dm”-Genauigkeit. Wiss. Arb. Fachrichtung Vermessungswesen der Universität Hannover, No. 157, Hannover.Google Scholar
  2. Colombo, O. (1981). Numerical Methods for Harmonic Analysis on the Sphere. Dept. of Geodetic Science and Surveying, Rep. No. 310, The Ohio State University, Columbus/Ohio.Google Scholar
  3. Denker, H. (1988). Hochauflösende regionale Schwerefeldbestimmung mit gravimetrischen und topographischen Daten. Wiss. Arb. Fachrichtung Vermessungswesen der Universität Hannover, No. 156, Hannover.Google Scholar
  4. Forsberg, R., D. Solheim (1988). Performance of FFT Methods in Local Gravity Field Modelling. Presented Chapman Conference on Progress in the Determination of the Earth’s Gravity Field, Fort Lauderdale/Florida.Google Scholar
  5. Paul, M.K. (1978). Recurrence Relations for Integrals of Associated Legendre Functions. Bulletin Géodésique 52, 177–190.CrossRefGoogle Scholar
  6. Pavlis, N. (1988). Modeling and Estimation of a Low Degree Geopotential Model From Terrestrial Gravity Data. Dept. of Geodetic Science and Surveying, Rep. No. 386, The Ohio State University, Columbus/Ohio.Google Scholar
  7. Rapp, R.H. (1978). A Global 1° × 1° Anomaly Field Combining Satellite, Geos-3 Altimeter, and Terrestrial Data. Dept. of Geodetic Science and Surveying, Rep. No. 278, The Ohio State University, Columbus/Ohio.Google Scholar
  8. Rapp, R.H., J.Y. Cruz (1986). Spherical Harmonic Expansion of the Earth’s Gravitational Potential Field to Degree 360 Using 30′ Mean Anomalies. Dept. of Geodetic Science and Surveying, Rep. No. 376, The Ohio State University, Columbus/Ohio.Google Scholar
  9. Sjoeberg, L. (1980). A Recurrence Relation for the β l Function. Bulletin Géodésique 54, 67–72.Google Scholar
  10. Torge, W., G. Weber, H.-G. Wenzel (1982). Computation of a High Resolution European Gravimetric Geoid (EGG1). Proceedings of the 2nd Symposium on the Geoid in Europe and the Mediterranean Area, Rome, 437–460, Instituto Militare Geografico Militare Italiano, Florence.Google Scholar
  11. Torge, W., T. Bašić, H. Denker, J. Doliff, H.-G. Wenzel (1989). Long Range Geoid Control through the European GPS Traverse. Deutsche Geodätische Kommission, Reihe B, No. 290, München.Google Scholar
  12. Tscherning, C.C., R. Forsberg (1986). Geoid Prediction in the Nordic Countries From Gravity and Height Data. Boll. Geod. Sci. Aff. 46, 21–43.Google Scholar
  13. Tscherning, C.C. (1989). Achievable Accuracy for Geoid Height Differences Across the Strait of Gibraltar. Presented First International Workshop on Geodesy for the Europe-Africa Fixed Link Feasability Studies in the Strait of Gibraltar, Madrid, March 8–10, 1989.Google Scholar
  14. Weber, G. (1984). Hochauflösende Freiluftanomalien und gravimetrische Lotabweichungen für Europa. Wiss. Arb. Fachrichtung Vermessungswesen der Univeristät Hannover, No. 135, Hannover.Google Scholar
  15. Weber, G., H. Zomorrodian (1988). Regional Geopotential Model Improvement for the Iranian Geoid Determination. Bulletin Géodésique 62, 125–141.CrossRefGoogle Scholar
  16. Wenzel, H.-G. (185). Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde. Wiss. Arb. Fachrichtung Vermessungswesen der Universität Hannover, No. 137, Hannover.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • T. Bašić
    • 1
  • H. Denker
    • 1
  • P. Knudsen
    • 2
  • D. Solheim
    • 3
  • W. Torge
    • 1
  1. 1.Institut für ErdmessungUniversität HannoverGermany
  2. 2.Kort- og MatrikelstyrelsenDenmark
  3. 3.Statens KartverkNorway

Personalised recommendations