Skip to main content

Origin, Composition, and Microbial Utilization of Dissolved Organic Matter

  • Chapter
Aquatic Microbial Ecology

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

There are two principal sources of organic matter in aquatic environments, living (biomass) and nonliving (detritus) (Odum and Cruz, 1963; Wetzel, 1983). It has long been noted that nonliving organic matter plays an important role in the structure and function of aquatic ecosystems (Krogh and Lange, 1932; Birge and Juday, 1934; Ohler 1934; Odum, 1963; Saunders, 1977). The detritus food chains were established along parallel lines with the classical phytoplankton-zooplankton grazing food chains. Wetzel et al. (1972) have developed a detailed scheme and model for the detritus food chain and have emphasized its fundamental differences from the classical grazing food chain. The nonpredatory loss of organic matter was found to be essential for understanding the whole aquatic ecosystem. Detrital organic matter tends to accumulate in aquatic environments until a quasi equilibrium is attained. This equilibrium is regulated by many environmental processes, such as decomposition, utilization, aggregation, and sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S. 1981. Chemical Communication at the Microbial Level, vol. 1. CRC Press, Boca Raton.

    Google Scholar 

  • Aiken, G.R., McKnight, D.M., Wershaw, R.L., and MacCarthy, P. 1985. Humic Substances in Soil, Sediment and Water. Geochemistry, Isolation and Characterization. Wiley, New York.

    Google Scholar 

  • A1-Hasan, R.H., Coughlan, S.J., Aditipant, A., and Fogg, G.E. 1975. Seasonal variations in phytoplankton and glycollate concentrations in the Menai Straits, Anglesey. Journal of Marine Biological Association of the United Kingdom 55: 557–565.

    Google Scholar 

  • Allen, H.L. 1976. Dissolved organic matter in lakewater: characteristics of molecular weight size-fractions and ecological implications. Oikos 27: 64–70.

    CAS  Google Scholar 

  • Allen, H.L. 1978. Low molecular weight dissolved organic matter in five softwater ecosystems: a preliminary study and ecological implications. Internationale Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 20: 514–524.

    Google Scholar 

  • Ammerman, J.W., and Azam, F. 1985. Bacterial 5’-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 277: 1338–1340.

    Google Scholar 

  • Andersson, A., Lee, C., Azam, F., and Hagström, A. 1985. Release of amino acids and inorganic nutrients by heterotrophic marine microflagellates. Marine Ecology Progress Series 23: 99–106.

    CAS  Google Scholar 

  • Armstrong, F.B. 1983: Biochemistry, 2nd ed. Oxford University Press, New York.

    Google Scholar 

  • Azam, F., and Hodson, R.R. 1981. Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Marine Ecology Progress Series 6: 231–222.

    Google Scholar 

  • Azam, F., and Cho, B.C. 1987. Bacterial utilization of organic matter in the sea. pp. 261–281 in Fletcher, M., Gray, T.R.G., and Jones, J.G. (editors), Ecology of Microbial Communities. Cambridge University Press, Cambridge.

    Google Scholar 

  • Azam, F., Fenchel, T. Field, J.G., Gray, J.S., Meyer-Reil, L.A., and Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Google Scholar 

  • Baumann, P., Baumann, L., and Mandel, M. 1971. Taxonomy of marine bacteria: the genus Beneckea. Journal of Bacteriology 107: 268–294.

    PubMed  CAS  Google Scholar 

  • Baumann, L., Baumann, P., Mandel, M., and Allen, R.D. 1972. Taxonomy of aerobic marine eubacteria. Journal of Bacteriology 110: 402–429.

    PubMed  CAS  Google Scholar 

  • Bell, R.T. and Kuparinen, J. 1984. Assesing phytoplankton and bacterioplankton production during early spring in Lake Erken, Sweden. Applied and Environmental Microbiology 48: 1221–1231.

    PubMed  CAS  Google Scholar 

  • Bell, W.H. 1980. Microbial ecology of algal extracellular products. The specificity of algal-bacterial interactions. Biological Bulletin 159: 456–487.

    Google Scholar 

  • Bell, W.H. and Mitchell, R. 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biological Bulletin 143: 265–277.

    Google Scholar 

  • Berland, B.R., Bonin, D.J., and Maestrini, S.Y. 1970. Study of bacteria associated with marine algae in culture. III. Organic substrates supporting growth. Marine Biology 5: 68–76.

    Google Scholar 

  • Birge, E.A. and Juday, C. 1934. Particulate and dissolved organic matter in inland lakes. Ecology and Oceanography 4: 440–474.

    CAS  Google Scholar 

  • Brehm, J. 1967. Untersuchungen über den Aminosäure-Haushalt holsteinischer Gewässer, insbesondere des Plußsees. Archiv für Hydrobiologie, Supplement 32: 313–435.

    Google Scholar 

  • Brock, T.D. and Clyne, J. 1984. Significance of algal excretory products for growth of epilimnetic bacteria. Applied and Environmental Microbiology 47: 731–734.

    PubMed  CAS  Google Scholar 

  • Burnison, B.K. and Morita, R.Y. 1974. Heterotrophic potential for amino acid uptake in a naturally eutrophic lake. Applied Microbiology 27: 488–495.

    PubMed  CAS  Google Scholar 

  • Burns, R.G. 1983. Extracellular enzyme-substrate interactions in soil. pp. 249–298 in Slater, J.H., Whittenbury, R., and Wimpenny, J.W.T. (editors), Microbes in Their Natural Environments. Cambridge University Press, Cambridge.

    Google Scholar 

  • Caron, D.A., Goldman, J.C., and Dennett, M.R. 1988. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159: 27–40.

    Google Scholar 

  • Choi, C.I. 1972. Primary production and release of dissolved organic carbon from phytoplankton in the Western North Atlantic Ocean. Deep-Sea Research 19: 731–737.

    CAS  Google Scholar 

  • Christman, R.F. and Gjessing, E.T. 1983. Aquatic and Terrestrial Humic Materials. Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Chróst, R.J. 1975. Inhibitors produced by algae as an ecological factor affecting bacteria in water. II. Antibacterial activity of algae during blooms. Acta Microbiologica Polonica (B) 7: 167–176.

    Google Scholar 

  • Chróst, R.J. 1978a. The estimation of extracellular release and heterotrophic activity of aquatic bacteria.Acta Microbiologica Polonica 27:139–146.

    PubMed  Google Scholar 

  • Chróst R.J. 1978b. Extracellular release in Chlorella vulgaris culture and the role of bacteria accompanying-algae in this process. Acta Microbiologica Polonica 27: 55–62.

    PubMed  Google Scholar 

  • Chróst, R.J. 1981. The composition and bacterial utilization of DOC released by phytoplankton. Kieler Meeresforschungen, Sonderheft 5: 325–332.

    Google Scholar 

  • Chróst, R.J. 1983. Plankton photosynthesis, extracellular release and bacterial utilization of released dissolved organic carbon (RDOC) in lakes of different trophy. Acta Microbiologica Polonica 32: 275–287.

    PubMed  Google Scholar 

  • Chróst, R.J. 1984. Use of [14C]-dissolved organic carbon (RDOC) released by algae as a realistic tracer of hetrotrophic activity measurements for aquatic bacteria. Archiv für Hydrobiologie, Ergebnisse der Limnologie 19: 207–214.

    Google Scholar 

  • Chróst, R.J. 1986. Algal-bacterial metabolic coupling in the carbon and phosphorus cycle in lakes, pp. 360–366 in Megusar, F., and Gantar, M. (editors), Perspectives in Microbial Ecology. Slovene Society for Microbiology, Ljubljana.

    Google Scholar 

  • Chróst, R.J. 1988. Phosphorus and microplankton development in a eutrophic lake. Acta Microbiologica Polonica 37: 205–225.

    Google Scholar 

  • Chróst, R.J. 1989. Characterization and significance of β-glucosidase activity in lake water. Limnology and Oceanography 34: 660–672.

    Google Scholar 

  • Chróst, R.J. and Sikorska, U. 1976. The effect of pollution on photosynthetic activity of algae and physiological activity of bacteria in lake. Polskie Archiwum Hydrobiologii 23: 357–364.

    Google Scholar 

  • Chróst, R.J. and Brzeska, D. 1978. Extracellular release of organic products and growth of bacteria in Anabaena cylindrica (blue-green alga) culture. Acta Microbiologica Polonica 27: 287–295.

    PubMed  Google Scholar 

  • Chróst, R.J. and Wazyk, M. 1978. Primary production and extracellular release by phytoplankton in some lakes of the Mazurian Lake District, Poland. Acta Microbiologica Polonica 27: 73–81.

    Google Scholar 

  • Chróst, R.J. and Faust, M.A. 1980. Molecular weight fractionation of dissolved organic matter (DOM) released by phytoplankton. Acta Microbiologica Polonica 29: 79–88.

    PubMed  Google Scholar 

  • Chróst, R.J. and Faust, M.A. 1983. Organic carbon release by phytoplankton: its composition and utilization by bacterioplankton. Journal of Plankton Research 5: 477–493.

    Google Scholar 

  • Chróst, R.J. and Overbeck, J. 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plußsee (north German eutrophic lake). Microbial Ecology 13: 229–248.

    Google Scholar 

  • Chróst, R.J. and Overbeck, J. 1989. Application of the isotope dilution principle to the determination of [14C]-glucose incorporation by aquatic bacteria. Acta Microbiologica Polonica 38: 75–89.

    Google Scholar 

  • Chróst, R.J., Halemejko, G.Z., and Overbeck, J. 1986a. Is proteolysis dependent on phosphorus in fresh water? Federation of European Microbiological Societies Microbiology Letters 37: 199–202.

    Google Scholar 

  • Chróst, R.J., Wcislo, R., and Halemejko, G.Z. 1986b. Enzymatic decomposition of organic matter by bacteria in an eutrophic lake. Archiv für Hydrobiologie 107: 145–165.

    Google Scholar 

  • Chróst, R.J., Siuda, W., Albrecht, D., and Overbeck, J. 1986c. A method for determining enzymatically hydrolyzable phosphate (EHP) in natural waters. Limnology and Oceanography 31: 662–667.

    Google Scholar 

  • Chróst, R.J., Overbeck, J., and Wcislo, R. 1988. Evaluation of the [3H]thymidine method for estimating bacterial growth rates and production in lake water: re-examination and methodological comments.Acta Microbiologica Polonica 37: 95–112.

    Google Scholar 

  • Chróst, R.J., Münster, U., Rai, H., Albrecht, D., Witzel, K.P.. and Overbeck, J. 1989. Photosynthetic production and exoenzymatic degradation of organic matter in the euphotic zone of eutrophic lake. Journal of Plankton Research 11: 223–242.

    Google Scholar 

  • Cole, J.J., Likens, G.E., and Strayer, D.L. 1982. Photosynthetically produced dissolved organic carbon: An important carbon source for planktonic bacteria. Limnology and Oceanography 27: 1080–1090.

    CAS  Google Scholar 

  • Cole, J.J., McDowell, W.H., and Likens, G.E. 1984. Sources and molecular weight of dissolved organic carbon in an oligotrophic lake. Oikos 42: 1–9.

    CAS  Google Scholar 

  • Copping, A.F. and Lorenzen, C.J. 1980. Carbon budget of a marine phytoplankton- herbivore system with carbon-14 as a tracer. Limnology and Oceanography 25: 873–882.

    Google Scholar 

  • Coveney, M.F. 1982. Bacterial uptake of photosynthetic carbon from fresh water phytoplankton. Oikos 38: 8–20.

    CAS  Google Scholar 

  • Daft, M.J. and Stewart, W.D.P. 1973. Light and electron microscope observations on algal lysis by bacterium CP-1. New Phytologist 72: 799–808.

    Google Scholar 

  • Dobrowolski, K.A. 1973. Role of birds in Polish wetland ecosystems. Polskie Archiwum Hydrobiologii 20: 217–223.

    Google Scholar 

  • Dobrowolski, K.A., Halba, R., and Nowicki, J. 1976. The role of birds in eutrophication by import and export of trophic substances in various waters. Limnologica 10: 543–549.

    Google Scholar 

  • Eppley, R.W. and Sharp, J.H. 1975. Photosynthetic measurements in the Central North Pacific: the dark loss of carbon in 24-h incubation. Limnology and Oceanography 20: 981–987.

    CAS  Google Scholar 

  • Faust, M.A. and Chróst, R.J. 1981. Photosynthesis, extracellular release and hetero- trophy of dissolved organic matter in Rhode River estuarine plankton, pp. 465–479 in Neilson, B.J., and Cronin, L.E. (editors), Estuaries and Nutrients. The Humana Press, Clifton.

    Google Scholar 

  • Ferguson, R.L. and Sunda, W.G. 1984. Utilization of amino acids by planktonic marine bacteria: The importance of clean technique and low substrate additions. Limnology and Oceanography 29: 258–274.

    CAS  Google Scholar 

  • Fogg, G.E. 1966. The extracellular products of algae. Oceanography and Marine Biology Annual Reviews 4: 195–205.

    CAS  Google Scholar 

  • Fogg, G.E. 1983. The ecological significance of extracellular products of phytoplankton photosynthesis.Botanica Marina 26: 3–14.

    CAS  Google Scholar 

  • Fogg, G.E. and Watt, W.D. 1965. The kinetics of release of extracellular products of photosynthesis by phytoplankton. Memorie Dell’Instituto Italiano di Idrobiologia 18: 167–174.

    Google Scholar 

  • Fogg, G.E., Eagle, D.J., and Kinson, M.E. 1969. The occurrence of glycolic acid in neutral waters. Internationale Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 17: 480–484.

    Google Scholar 

  • Fuhrman, J.A. 1987. Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach.Marine Ecology Progress Series 37: 45–52.

    CAS  Google Scholar 

  • Fuhrman, J.A. and Ferguson, R.L. 1986. Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: agreement between chemical and microbiological measurements. Marine Ecology Progress Series 33: 237–242.

    CAS  Google Scholar 

  • Gagosian, R.B. and Lee, C. 1981. Processes controlling the distribution of biogenic organic compounds in seawater. pp. 91–123 in Duursma, E.K., and Dawson, R. (editors), Marine Organic Chemistry. Evolution, Composition, Interactions and Chemistry of Organic Matter in Seawater. Elsevier, Amsterdam.

    Google Scholar 

  • Gardner, W. and Lee, G.F. 1975. The role of amino acids in the nitrogen cycle in Lake Mendota. Limnology and Oceanography20: 379–388.

    CAS  Google Scholar 

  • Gardner, W., Chandler, J.F., Laird, G.A. and Scavia, D. 1986 Microbial response to amino acid additions in Lake Michigan: grazer control and substrate limitation of bacterial populations.Journal of Great Lakes Research 12: 161–174.

    CAS  Google Scholar 

  • Geller, A. 1985. Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistant lake water constituents. Schweizerische Zeitschrift für Hydrologie47: 27–44.

    CAS  Google Scholar 

  • Geller, A. 1986. Comparsion of mechanisms enhencing biodegradability of refractory lake waters constituents. Limnology and Oceanography 31: 755–764.

    CAS  Google Scholar 

  • Gjessing, E.T. 1976. Physical and Chemical Characteristics of Aquatic Humics. Ann Arbor Science, Ann Arbor.

    Google Scholar 

  • Glenn, A.R. 1976. Production of extracellular proteins by bacteria. Annual Review of Microbiology 30: 41–85.

    PubMed  CAS  Google Scholar 

  • Haan De, H. 1974. Effect of a fulvic acid fraction on the growth of a Pseudomonas sp. from Tjeukemeer (The Netherlands). Freshwater Biology 4: 301–310.

    Google Scholar 

  • Haan De, H. and Boer De, T. 1979. Seasonal variations of fulvic acids, amino acids, and sugars in Tjeukemeer, the Netherlands. Archiv für Hydrobiologie 85: 30–40.

    Google Scholar 

  • Haan De, H. 1983. Use of ultraviolet spectroscopy, gel filtration, pyrolysis/mass spectrometry and numbers of benzoate-metabolizing bacteria in the study of humification and degradation of aquatic organic matter, pp. 165–182 in Christman, R.F. and Gjessing, E.T. (editors), Aquatic and Terrestrial Humic Materials. Ann Arbor Science Publishers, Ann Arbor.

    Google Scholar 

  • Hagström, A., Azam, F., Andersson, A., Wikner, J., and Rassoulzadegan, F. 1988. Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nannoflagellates in the organic fluxes. Marine Ecology Progress Series 49: 171–178.

    Google Scholar 

  • Hagström, A., Ammerman, J.W., Henrichs, S., and Azam, F. 1984. Bacterioplankton growth in seawater: II. Organic matter utilization during steady-state growth in seawater cultures. Marine Ecology Progress Series 18: 31–39.

    Google Scholar 

  • Haider, K. 1988. The microbial degradation of lignins and its role in the carbon cycle. Forum Mikrobiologie 11: 477–489.

    CAS  Google Scholar 

  • Halemejko, G.Z. and Chróst, R.J. 1984. The role of phosphatases in phosphorus mineralization during decomposition of lake phytoplankton blooms. Archiv für Hydrobiologie 101: 489–502.

    CAS  Google Scholar 

  • Halemejko, G.Z. and Chróst, R.J. 1986. Enzymatic hydrolysis of proteinaceous particulate and dissolved material in an eutrophic lake. Archiv für Hydrobiologie 107:1–21.

    CAS  Google Scholar 

  • Hama, T. and Handa, N. 1987. Pattern of organic matter production of natural phytoplankton population in a eutrophic lake. 1. Intracellular products. Archiv für Hydrobiologie 109: 107–120.

    CAS  Google Scholar 

  • Hartman, R.T. 1960. Algae and metabolites of natural waters, pp. 32–64 in Tryon, C.A. and Hartman, R.T. (editors), Ecology of Algae. University of Pittsburg, Pittsburg.

    Google Scholar 

  • Harvey, G.R., Boran, D.A., Chosal, L.A., and Tokar, J.M. 1983. The structure of marine fulvic and humic acids.Marine Chemistry 12: 119–132.

    CAS  Google Scholar 

  • Hatcher, P.G. and Spiker, E.C. 1988. Selective degradation of plant biomolecules. pp. 59–74 in Frimmel, F.H., and Christman, R.F. (editors), Humic Substances and Their Role in the Environment. Wiley, New York.

    Google Scholar 

  • Hedges, J.I., Clark, W.A., and Conoric, G.L. 1988a. Organic matter sources to the water column and surfical sediments of marine bay. Limnology and Oceanography 33:1116– 1136.

    CAS  Google Scholar 

  • Hedges, J.I., Clark, W.A., and Coronic, G.L. 1988 b. Fluxes and reactivities of organic matter in a coastal marine bay. Limnology and Oceanography 33: 1137–1152.

    CAS  Google Scholar 

  • Hellebust, J.A. 1974. Extracellular products, pp. 838–863 in W.D.P. Stewart (editor), Algal Physiology and Biochemistry. Blackwell, Oxford.

    Google Scholar 

  • Herbst, V. 1984. Physiologische Untersuchungen zur Kopplung der Stoffwechsel von Oscillatoria redekei van Goor und Begleitbakterien.Archiv für Hydrobiologie, Supplement 69: 525–594.

    Google Scholar 

  • Herbst, V. and Overbeck, J. 1978. Metabolie coupling between the alga Oscillatoria redekei and accompanying bacteria. Naturwissenschaften 65: 598–599.

    CAS  Google Scholar 

  • Hessen, D.O. 1985. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. Federation of European Microbiological Societies, Microbiology Ecology 31: 215–223.

    CAS  Google Scholar 

  • Hobbie, J.E. and Williams, P.J.LeB. 1984. Heterotrophic Activity in the Sea. Plenum, New York.

    Google Scholar 

  • Höfle, M.G. 1983. Long-term changes in chemostat cultures of Cytophaga johnsonae. Applied and Environmental Microbiology 46: 1045–1053.

    Google Scholar 

  • Hollibaugh, J.T. and Azam, F. 1983. Microbial degradation of dissolved protein in seawater. Limnology and Oceanography 28: 1104–1116.

    CAS  Google Scholar 

  • Hoppe, H.G., Kim, S.J., and Gocke, K. 1988. Microbial decomposition in aquatic environments: combined process of extracellular enzyme activity and substrate uptake. Applied and Environmental Microbiology 54: 784–790.

    PubMed  CAS  Google Scholar 

  • Horvath, R.S. 1972. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriological Reviews 36: 146–155.

    PubMed  CAS  Google Scholar 

  • Hough, R.A. and Wetzel, R.G. 1975. The release of dissolved organic carbon from submerged aquatic macrophytes: diel, seasonal and community relationship. Internationale Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 19: 939–948.

    Google Scholar 

  • Itoh, T. 1978. Seasonal fluctuations in the amount of chlorophyll-a and dissolved organic carbon in water of Lake Biwa. The Japanese Journal of Limnology 39: 75–81.

    CAS  Google Scholar 

  • Iturriaga, R. 1981. Phytoplankton photoassimilated extracellular products; heterotrophic utilization in marine environments. Kieler Meeresforschungen, Sonderheft 5: 318–324.

    Google Scholar 

  • Jacobsen, T.R. and Azam, F. 1985. Role of bacteria in copepod fecal pellet decomposition: Colonization, growth rates and mineralization. Bulletin of Marine Sciences 35: 495–502.

    Google Scholar 

  • Johansson, J.A. 1983. Seasonal development of bacterioplankton in two forest lakes in Central Sweden. Hydrobiologia 101: 71–87.

    Google Scholar 

  • Jørgensen, N.O.G. 1982. Heterotrophic assimilation and occurrence of dissolved free amino acids in a shallow estuary. Marine Ecology Progress Series 8: 145–159.

    Google Scholar 

  • Jørgensen, N.O.G. 1986. Huxes of free amino acids in three Danish lakes.Freshwater Biology 16: 255–268.

    Google Scholar 

  • Jørgensen, N.O.G. 1987. Free amino acids in lakes: Concentrations and assimilation rates in relation to phytoplankton and bacterial production.Limnology and Oceanography 32: 97–111.

    Google Scholar 

  • Jørgensen, N.O.G. and Søndergaar, M. 1984. Are dissolved free amino acids free? Microbial Ecology 10: 301–316.

    Google Scholar 

  • Jørgensen, N.O.G. and Bosselman, S. 1988. Concentrations of free amino acids and their bacterial assimilation rates in vertical profiles of two Danish lakes: Relations to diel changes in Zooplankton grazing activity. Archiv für Hydrobiologie, Ergebnisse der Limnologie 31: 289–300.

    Google Scholar 

  • Jørgensen, N.O.G., Søndergaard, d, M., Hansen, H.J., Bosselman, S., and Riemann, B. 1983. Diel variation in concentration, assimilation and respiration of dissolved free amino acids in relation to planktonic primary and secondary production in two eutrophic lakes. Hydrobiologia 107: 107–122.

    Google Scholar 

  • Jüttner, F. 1981. Biologically active compounds released during algal blooms. Internationale Vereinigung für Theoretische und Angewande Limnologie, Verhandlungen 21: 227–230.

    Google Scholar 

  • Kato, K. and Stabel, H.H. 1984. Studies on the carbon flux from phyto- to bacterioplankton communities in Lake Constance. Archiv für Hydrobiologie 102: 177–192.

    CAS  Google Scholar 

  • King, G.M. and Berman, T. 1984. Potential effects of isotope dilution on apparent respiration in 14C heterotrophy experiments. Marine Ecology Progress Series 19:175–180.

    CAS  Google Scholar 

  • Kirchman, D.L., K’Nees, E., and Hodson, R. 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and Environmental Microbiology 49: 599–607.

    PubMed  CAS  Google Scholar 

  • Krogh, A.A. and Lange, E. 1932. Quantitative Untersuchungen über Plankton, Kolloide und gelöste organische und anorganische Substanzen in dem Furesee. Internationale Revue der Gesamten Hydrobiologie 26: 20–53.

    Google Scholar 

  • Lampert, W. 1978. Release of dissolved organic carbon by grazing Zooplankton. Limnology and Oceanography 23: 831–834.

    CAS  Google Scholar 

  • Lancelot, C. 1984. Extracellular release of small and large molecules by phytoplankton in the southern bight of the North Sea. Estuarine and Coastal Shelf Sciences 18: 65–77.

    Google Scholar 

  • Lancelot, C. and Billen, G. 1984. Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea. Limnology and Oceanography 29: 721–730.

    CAS  Google Scholar 

  • Lancelot, C. and Mathot, S. 1985. Biochemical fractionation of primary production by phytoplankton in Belgian coastal water during short-and long-term incubations with [14C]-bicarbonate. I. Mixed diatom population. Marine Biology 86: 219–226.

    CAS  Google Scholar 

  • Larsson, U. and Hagström, A. 1982. Fractionated phytoplankton primary production, exudate release, and bacterial production in a Baltic eutrophication gradient. Marine Biology 67: 57–70.

    Google Scholar 

  • Lignell, R. and Kuosa, H. 1988. Sources of error in algal exudation measurements. Archiv für Hydrobiologie, Ergebnisse der Limnologie 31: 97–104.

    Google Scholar 

  • Likens, G.E. 1985. An Ecosystem Approach to Aquatic Ecology. Mirror Lake and its Environment. Springer-Verlag, Tokyo.

    Google Scholar 

  • Lord, J.M. 1972. Glycolate oxidoreductase in Escherichia coli. Biochimica et Biophysica Acta 267: 227–237.

    CAS  Google Scholar 

  • Lovell, C.R. and Konopka, A. 1985. Primary and bacterial production in two dimictic Indiana lakes. Applied and Environmental Microbiology 49: 485–492.

    PubMed  CAS  Google Scholar 

  • Martin, Y.P. and Bianchi, M.A. 1980. Structure, diversity, and catabolic potentialities of aerobic heterotrophic bacterial populations associated with continous cultures of natural marine phytoplankton. Microbial Ecology 5: 265–279.

    Google Scholar 

  • Meffert, M.E. and Overbeck, J. 1979. Regulation of bacterial growth by algal release products. Archiv für Hydrobiologie 87: 118–121.

    CAS  Google Scholar 

  • Morris, I. 1981. Photosynthetic products, physiological state, and phytoplankton growth, pp. 83–102 in Platt, T. (editor), Physiological Bases of Phytoplankton Ecology. Canadian Bulletin of Fisheries and Aquatic Sciences 210, Ottawa.

    Google Scholar 

  • Morris, I. and Skea, W. 1978. Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine. Marine Biology 47: 303–312.

    CAS  Google Scholar 

  • Moss, B. 1981. The composition and ecology of periphyton communities in freshwater. 1. Inter-relationships between water chemistry, phytoplankton populations and periphyton populations in a shallow lake and associated experimental reservoirs (Lund Tubes). British Phycological Journal 16: 59–76.

    Google Scholar 

  • Münster, U. 1984. Distribution, dynamics and structure of free dissolved carbohydrates in the Plußsee, a north German eutrophic lake.Internationale Vereinigung für Theoretische und Angewande Limnologie, Vehandlungen 22: 929–935.

    Google Scholar 

  • Münster, U. 1985. Investigations about structure, distribution and dynamics of different organic substrates in the DOM of lake Plußsee. Archiv für Hydrobiologie, Supplement 70: 429–480.

    Google Scholar 

  • Münster, U., Nurminen, J. and Einiö, P. 1989. Evaluation of the measurements of extracellular enzyme activities in a polyhumic lake by means of studies with 4- methylumbelliferyl-substrates. Archiv für Hydrobiologie 115: 321–337.

    Google Scholar 

  • Nalewajko, C. 1977. Extracellular release in freshwater algae and bacteria: extracellular products of algae as a source of carbon for heterotrophs. pp. 589–626 in Cairns, J. (editor), Aquatic Microbial Communities. Garland, New York.

    Google Scholar 

  • Nalewajko, C. and Lean, D.R.S. 1972. Growth and excretion in planktonic algae and bacteria.Journal of Phycology 8: 361–366.

    CAS  Google Scholar 

  • Nissen, H., Nissen, P., and Azam, F. 1984. Multiphasic uptake of D-glucose by an oligotrophic marine bacterium. Marine Ecology Progress Series 16: 155–160.

    CAS  Google Scholar 

  • Odum, E.P. 1963. Primary and secondary energy flow in relation to ecosystem structure. Proceedings of 16th International Congress of Zoology 4: 336–338.

    Google Scholar 

  • Odum, E.P. and de la Cruz, A.A. 1963. Detritus as a major component of ecosystems. Bulletin of American Institute of Sciences 13: 39–40.

    Google Scholar 

  • Ohle, W. 1934. Über organische Stoffe in Binnenseen. Internationale Vereinigung für Theoretische und Angewande Limnologie, Vehandlungen 6: 249–262.

    Google Scholar 

  • Overbeck, J. 1975. Distribution pattern of uptake kinetic responses in a stratified eutrophic lake (Plußsee ecosystem study). Internationale Vereinigung für Theoretische und Angewandte Limnologie, Verhandlungen 19: 2600–2615.

    Google Scholar 

  • Overbeck, J. 1979. Studies on heterotrophic functions and glucose metabolism of microplankton in Plußsee. Archiv für Hydrobiologie, Ergebnisse der Limnologie 13: 56–76.

    CAS  Google Scholar 

  • Overbeck, J. 1982. Bakterien und Kohlenstoffumsatz im Plußsee. Probleme und Möglichkeiten der Mikrobenökologie. Forum Mikrobiologie 5: 292–303.

    Google Scholar 

  • Overbeck, J. 1985. Stoffwechselkopplung zwischen Phytoplankton und heterotrophen Gewässerbakterien—ein Schlüssel zum Verstädnis von Stoffkreisläufen in Gewässer. Rhenisch-Westfälische Akademie der Wissenschaften Vortäge 337: 7–34.

    Google Scholar 

  • Paerl, H.W. 1985. Enhancement of marine primary production by nitrogen-enriched acid rain.Nature 315: 747–749.

    CAS  Google Scholar 

  • Pieczynska, E. 1986. Sources and fate of detritus in the shore zone of lakes. Aquatic Botany 25: 153–166.

    Google Scholar 

  • Pieczynska, E. 1976. Selected Problems of Lake Littoral Ecology. University of Warsaw, Warsaw.

    Google Scholar 

  • Pieczynska, E. 1972. Ecology of the eulittoral zone of lakes. Ekologia Polska 20: 637–732.

    Google Scholar 

  • Pieczynska, E., Balcerzak, D., Kolodziejczyk, A., Olszewski, Z., and Rybak, J.I. 1984. Detritus in the littoral of several Mazurian lakes (sources and fates).Ekologia Polska 32: 387–440.

    Google Scholar 

  • Pollock, M.R. 1962. Exoenzymes. pp. 121–178 in Gunsalus, I.C., and Stanier, R.Y. (editors), The Bacteria, vol. 4. Academic, New York.

    Google Scholar 

  • Pomeroy, L.R. 1984. Significance of microorganisms in carbon and energy flow in marine systems, pp. 405–411 in Klug, M.J. and Reddy, C.A. (editors), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington DC.

    Google Scholar 

  • Pomeroy, L.R. and Wiebe, W.J. 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.

    Google Scholar 

  • Porter, K.G. 1988. Phagotrophic phytoflagellates in microbial food webs. Hydrobiologia 159: 89–97.

    Google Scholar 

  • Rai, H. 1984. Magnitude of heterotrophic metabolism of photosynthetically fixed dissolved organic carbon (PDOC) in Schöhsee, West Germany.Archiv für Hydrobiologie 102: 91–103.

    Google Scholar 

  • Reichardt, W., Overbeck, J., and Steubing, L. 1967. Free dissolved enzymes in lake waters. Nature 216: 1345–1347.

    CAS  Google Scholar 

  • Riemann, B. and Søndergaard, M. 1984. Bacterial growth in relation to phytoplankton primary production and extracellular release, pp. 233–248 in Hobbie, J.E., and LeB. Williams, P.J. (editors), Heterotrophic Activity in the Sea. Plenum, New York.

    Google Scholar 

  • Riemann, B. and Søndergaard, M. 1986. Carbon Dynamics in Eutrophic, Temperate Lakes. Elsevier, Amsterdam.

    Google Scholar 

  • Rogers, H.J. 1961. The dissimilation of high molecular weight organic substrates, pp. 261–318 in Gunsalus, I.C., and Stanier, R.Y. (editors), The Bacteria, vol. 2. Academic, New York.

    Google Scholar 

  • Romankevich, E.A. 1984. Geochemistry of Organic Matter in the Ocean. Springer Verlag, Tokyo.

    Google Scholar 

  • Salonen, K. and Jokinen, S. 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 101: 203–209.

    Google Scholar 

  • Sanders, R.W. and Porter, K.G. 1988. Phagotrophic phytoflagellates. pp. 167–192 in Marshall, K.C. (editor), Advances in Microbial Ecology, vol. 10. Plenum Press, New York.

    Google Scholar 

  • Saunders, G.W. 1977. Carbon flow in the aquatic systems, pp. 417–440 in Cairn, J. Jr (editor), Aquatic Microbial Communities. Garland, New York.

    Google Scholar 

  • Schütt, C. 1988. Plasmid-DNA in natural bacterial populations of four brown water lakes (South Sweden). Archiv für Hydrobiologie, Ergebnisse der Limnologie 31: 133–139.

    Google Scholar 

  • Schütt, C. 1989. Plasmids in the bacterial assemblage of a dystrophic lake: Evidence for plasmid encoded-nickel resistance. Microbial Ecology 17: 49–62.

    Google Scholar 

  • Shah, N.M. and Fogg, G.E. 1973. The determination of glycolic acid in sea water. Journal of marine Biological Association of the United Kingdom 53: 321–324.

    CAS  Google Scholar 

  • Shah, N.M. and Wright, R.T. 1974. The occurrence of glycolic acid in coastal sea water. Marine Biology 24: 121–124.

    CAS  Google Scholar 

  • Sharp, J.H. 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it? Limnology and Oceanography 22: 381–399.

    CAS  Google Scholar 

  • Sherr, B.F., Sherr, E.B., and Hopkinson, C.S. 1988. Trophic interactions within pelagic microbial communities: indications of feedback regulation of carbon flow. Hydrobiologia 159: 19–26.

    Google Scholar 

  • Sinsabaugh, R.L. and Linkins, A.E. 1988. Exoenzyme activity associated with lotic epilithon.Freshwater Biology 20: 249–261.

    CAS  Google Scholar 

  • Søndergaard, M. 1981. Kinetics of extracellular release of [14C]-labelled organic carbon by submerged macrophytes.Oikos 36: 331–347.

    Google Scholar 

  • Søndergaard, M. and Jensen, L.M. 1986. Phytoplankton. pp. 27–126 in Riemann, B., and Søndergaard, M. (editors), Carbon Dynamics in Eutrophic, Temperate Lakes. Elsevier, Amsterdam.

    Google Scholar 

  • Søndergaard, M. and Schierup, H.H. 1982. Release of extracellular organic carbon during a diatom bloom in Lake Mosso: molecular weight fractionation. Freshwater Biology 12: 313–320.

    Google Scholar 

  • Søndergaard, M., Riemann, B., Møller Jensen, L., Jørgensen, N.O.G., Bjørnsen, P.K., Olsen, M., Larsen, J.B., Geertz-Hensen, O., Hansen, J., Christoffersen, K., Jespersen, A.M., Anderson, F., and Bosselmann, S. 1988. Pelagic food web processes in an oligotrophic lake.Hydrobiologia 164: 271–286.

    Google Scholar 

  • Stabel, H.H. 1978. Zur Molekulargewichts Verteilung gelöster organischer Moleküle in verschiedenen Oberflächengewässern. Archiv für Hydrobiologie 82: 88–97.

    CAS  Google Scholar 

  • Stabel, H.H. 1977. Gebundene Kohlenhydrate als stabile Komponenten in Schöhsee und in Scenedesmus Kulturen. Archiv für Hydrobiologie, Supplement 53: 159–254.

    CAS  Google Scholar 

  • Stabel, H.H. and Münster, U. 1977. On the structure of soluble organic substances in sediments of lake Plußsee. pp. 155–160 in Golterman, H.L. (editor), Interactions Between Sediments and Freshwater. Junk, Hague.

    Google Scholar 

  • Stabel, H.H. and Steinberg, C. 1976. Gelöste organische Moleküle im Walchensee. Gewässer und Abwasser 60/61: 100–112.

    Google Scholar 

  • Stabel, H.H., Moaledj, J., and Overbeck, J. 1979. On the degradation of dissolved organic molecules from Plußsee by oligocarbophilic bacteria. Archiv für Hydrobiologie, Ergebnisse der Limnologie 12: 95–104.

    CAS  Google Scholar 

  • Steinberg, C. 1977. Schwer abbaubare, stickstoffhaltige gelöste organische Substanzen im Schöhsee und in Algenkulturen. Archiv für Hydrobiologie, Supplement 53: 48–158.

    CAS  Google Scholar 

  • Steinberg, C. and Münster, U. 1985. Geochemistry and ecological role of humic substances in lakewater. pp. 105–145 in Aiken, G.R., McKnight, D.M., Wershaw, R.L., and MacCarthy, P. (editors), Humic Substances in Soil, Sediment and Water. Geochemistry, Isolation, and Characterization. Wiley and Sons, New York.

    Google Scholar 

  • Stevenson, J.F. 1982. Humus Chemistry; Genesis, Composition, Reactions. Wiley and Sons, New York.

    Google Scholar 

  • Taylor, G.T., Iturriaga, R. and Sullivan, C.W. 1985. Interactions of bacterivorous grazers and heterotrophic bacteria with dissolved organic matter. Marine Ecology Progress Series 22: 129–141.

    Google Scholar 

  • Thurman, E.M. 1985. Organic Geochemistry of Natural Waters. Nijhoff/Junk, Boston.

    Google Scholar 

  • Tilzer, M.M. and Home, A.J. 1979. Diel patterns of phytoplankton productivity and extracellular release in ultra-oligotrophic Lake Tahoe. Internationale Revue der Gesamten Hydrobiologie 64: 157–176.

    Google Scholar 

  • Tipping, E. and Woof, C. 1983. Seasonal variations in the concentrations of humic substances in a soft-water lake. Limnology and Oceanography 28: 168–172.

    CAS  Google Scholar 

  • Tolbert, N.E. 1974. Photorespiration by algae, pp. 474–504 in Stewart, W.D.P. (editor), Algal Physiology and Biochemistry. Blackwell, Oxford.

    Google Scholar 

  • Tolbert, N.E. and Zill, L.P. 1956. Excretion of glycolic acid by algae during photosynthesis. Journal of Biological Chemistry 22: 895–906.

    Google Scholar 

  • Tranvik, L. 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbial Ecology 16: 311–322.

    CAS  Google Scholar 

  • Tranvik, L. and Höfle, M.G. 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Applied and Environmental Microbiology 53: 428–488.

    Google Scholar 

  • Watanabe, Y. 1980. A study of the excretion and extracellular products of natural phytoplankton in Lake Nakanuma, Japan. Internationale Revue der Gesamten Hydrobiologie 65: 809–834.

    Google Scholar 

  • Watt, W.D. 1966. Extracellular release of organic matter from two freshwater diatoms. Annales of Botany 33: 427–437.

    Google Scholar 

  • Weinmann, G. 1970. Gelöste Kohlenhydrate und andere organische Stoffe in natürlichen Gewässern und in Kulturen von Scenedesmus quadricauda. Archiv für Hydrobiologie, Supplement 37: 164–242.

    Google Scholar 

  • Wetzel, R.G. 1972. Functions and interactions of dissolved organic matter and the littoral zone in lake metabolism and eutrophication. pp. 333–347 in Kajak, Z., and Hilbricht-Ilkowska, A. (editors), Productivity Problems of Freshwater. PWN, Warszawa.

    Google Scholar 

  • Wetzel, R.G. 1979. The role of the littoral zone and detritus in lake metabolism. Archiv für Hydrobiologie, Ergebnisse der Limnologie 13: 145–161.

    Google Scholar 

  • Wetzel, R.G. 1983. Limnology, 2nd ed. Saunders College, Philadelphia.

    Google Scholar 

  • Wetzel, R.G. and Manny, B.A. 1972. Secretion of dissolved organic carbon and nitrogen by aquatic macrophytes. Internationale Vereinigung für Theoretische und Angewande Limnologie, Verhandlungen 18: 162–170.

    Google Scholar 

  • Wetzel, R.G. and Hough, R.A. 1973. Productivity and role of aquatic macrophytes in lakes: An assessment. Polskie Archiwum Hydrobiologii 20: 9–19.

    CAS  Google Scholar 

  • Wetzel, R.G. and Penhaie, P.A. 1979. Transport of carbon and excretion of dissolved organic carbon by leaves and roots/rhizomes in seagrass and their epiphytes. Aquatic Botany 6: 149–158.

    CAS  Google Scholar 

  • Wetzel, R.G., Rich, P.H., Miller, M.C., and Allen, H.L. 1972. Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Memorie Dell’Instituto Italiano di Idrobiologia 29: 185–243.

    Google Scholar 

  • Whittaker, J.R. and Vallentyne, J.R. 1956. On the occurrence of free sugars in lake sediment extrakts. Limnology and Oceanography 2: 98–110.

    Google Scholar 

  • Williams, P.J.LeB. 1981. Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web.Kieler Meeresforschungen, Sonderheft 5:1–28.

    Google Scholar 

  • Wright, R.T. 1970. Glycolic acid uptake by planktonic bacteria, pp. 521–536 in Hood, D.W. (editor), Organic Matter in Naturell Waters. Institute of Marine Sciences, Alaska.

    Google Scholar 

  • Wright, R.T. 1975. Studies on glycolic acid metabolism by freshwater bacteria. Limnology and Oceanography 20: 626–633.

    CAS  Google Scholar 

  • Wright, R.T. and Shah, N. 1975. The trophic role of glycolic acid in coastal seawater. I. Heterotrophic metabolism in seawater xand bacterial cultures. Marine Biology 33: 175–183.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Münster, U., Chróst, R.J. (1990). Origin, Composition, and Microbial Utilization of Dissolved Organic Matter. In: Overbeck, J., Chróst, R.J. (eds) Aquatic Microbial Ecology. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3382-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3382-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7991-4

  • Online ISBN: 978-1-4612-3382-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics