Rigidity and Weight Criteria

  • N. V. Banichuk


All real structures are characterized by some degree of deformability. As external loads are applied and the weight of the structure itself is acting on, the deformations may be large, and some parts of the structure may have displacements that are not admissible and inconsistent with a proper functioning of the structure. Therefore, making certain that the rigidity of the structure is maintained and reducing the weight, while observing constraints on the rigidity, is one of the most important design objectives.


Optimal Design Optimal Shape Concentrate Load Constant Thickness Weight Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 7

  1. 7.1.
    Adamovich, I.S., and Ricards, R.B., Weight optimization of an othotropic cylindrical plate with variable properties and constraints on the natural frequencies of vibrations, Izv. Akad. Nauk S.S.S.R., MTT, 1977, No. 2, pp. 120–125.Google Scholar
  2. 7.2.
    Annin, B.D., Optimal design of elastic, anisotropic inhomogenious bodies, Third National Congress on Theoretical and Applied Mechanics, Varna, Bulgaria, 1977, pp. 275–280.Google Scholar
  3. 7.3.
    Armand, J L, Minimum mass design for a plate-like structure for a specified fundamental frequency, AIAA J., 1971, 9, No. 9, pp. 1739–1745.MathSciNetMATHCrossRefGoogle Scholar
  4. 7.4.
    Arora, J.S., and Haug, E.J., Optimum structural design with dynamic constraints, J. Structural Division, Proc. Amer. Soc. Civil Engr., 1977, 103, NST 10, pp. 2071–2074.Google Scholar
  5. 7.5.
    Artiunian, N.H., and Abramian, B.L., Torsion of Elastic Bodies, Moscow, Fizmatgiz, 1963, 686 pp.Google Scholar
  6. 7.6.
    Banichuk, N.V., Determination of the optimal shape for elastic curved beams, Izv. Akad. Nauk SSSR, MTT, 1975, No. 6, pp. 124–133.Google Scholar
  7. 7.7.
    Banichuk, N.V., On a game-theoretic problem in optimization of elastic bodies, Dokl. Akad. Nauk SSSR, 1976, 226, No. 3, pp. 497–499.MathSciNetGoogle Scholar
  8. 7.8.
    Banichuk, N.V., On a two-dimensional optimization problem in the theory of torsion of elastic beams, Izv. Akad. Nauk SSSR, MTT, 1976, No. 5, pp. 45–52.Google Scholar
  9. 7.9.
    Banichuk, N.V., On optimal anisotropy for torsioned shafts, Izv. Akad. Nauk SSSR, MTT, 1978, No. 4, pp. 73–79.Google Scholar
  10. 7.10.
    Banichuk, N.V., On an extremization problem for a system with distributed parameters, and on determination of the optimal properties of an elastic medium, Dokl. Akad. Nauk SSSR, 1978, 242, No. 5, pp. 1042–1045.MathSciNetGoogle Scholar
  11. 7.11.
    Banichuk, N.V., Optimization problems for elastic anisotropic bodies, Archiwum Mechaniki Stosowanej, 1981, 33, No. 3, pp. 347–363.MathSciNetGoogle Scholar
  12. 7.12.
    Banichuk, N.V., and Kartvelishvili, V.M., Design of plates accounting for effects of constraints on changes in plates, Izv. Akad. Nauk SSSR, MTT, 1983, No. 6, pp. 130–136.Google Scholar
  13. 7.13.
    Banichuk, N.V., Kartvelishvili, V.M., and Litvinov, V.G., On optimal solutions for problems in design of elastic plates, Prikl. Mekhan., 1984, 20, No. 11, pp. 82–85.Google Scholar
  14. 7.14.
    Banichuk, N.V., and Larichev, A.D., Optimization of initially bent plates. In: Proceedings of the XII-th All-Union Conference on Plates and Shells,Erevan, Erevan University, 1980, Vol. 1, pp. 126–130.Google Scholar
  15. 7.15.
    Banichuk, N.V., and Larichev, A.D., Optimization problem for reinforced composite beams subjected to compression and bending, Stroit. Mechanika i Rashchet Sooruzhenii, 1981, No. 6, pp. 9–12.Google Scholar
  16. 7.16.
    Banichuk, N.V., and Larichev, A.D., Maximization of rigidity for torsioned elastic shafts made of composite materials, Izv. Akad. Nauk Arm. SSR, Mekhan., 1983, 36, No. 6, pp. 31–38.MATHGoogle Scholar
  17. 7.17.
    Banichuk, N.V., and Larichev, A.D., Optimal design problems for curvilinear shallow elements of structures, Optim. Control Applied Methods, 1984, 5, No. 3, pp. 197–205.MathSciNetMATHCrossRefGoogle Scholar
  18. 7.18.
    Banichuk, N.V., and Mironov„A.A., Optimization of the frequency of vibrations for an elastic plate in an ideal liquid, Prikl. Mat. Mekh., 1975, 39, No. 5, pp. 889–899.MathSciNetGoogle Scholar
  19. 7.19
    Bliss, G.A., Lectures on Calculus of Variations, University of Chicago Press, Chicago, 1946 (reprinted by Dover Co).MATHGoogle Scholar
  20. 7.20.
    Brach, R.M., Minimum dynamic response for a class of simply supported beam shapes, Intern. J. Mech. Sci., 1968, 10, pp. 429–439.CrossRefGoogle Scholar
  21. 7.21.
    Brach, R.M., Optimum design of beams for sudden loading, J. Eng. Mech. Division, Proc. Amer. Soc. Civ. Engr., 1968, 96, N-EM 6, pp. 1395–1407.Google Scholar
  22. 7.22.
    Bratus, A.S., Design of circular cylindrical shells of minimum weight with a fixed frequency of natural vibrations, Prikl. Mat. Mekh. 1983, 47, No. 5, pp. 805–814.MathSciNetGoogle Scholar
  23. 7.23.
    Cassis, J.H., and Schmit, L.A., Optimum design with dynamic constraints, J. Structural Division, Proc. Amer. Soc. Civ. Engr., 1976, 102, N-ST 10, pp. 2053–2071.Google Scholar
  24. 7.24.
    Chern, J.M., and Prager, W., Optimal design of rotating disc for given radial displacement of edge, J. Optimization Theory Appl., 1970, 6, No. 2, pp. 161–170.MathSciNetCrossRefGoogle Scholar
  25. 7.25.
    Cinquini, C., Optimal elastic design for prescribed maximum deflection, J. Structural Mechanics, 1979, 7, No. 1, pp. 21–34.MathSciNetCrossRefGoogle Scholar
  26. 7.26.
    Fox, R.L., an Kapoor, M.P., Structural optimization in the dynamic response regime-A computational approach, AIAA J., 1970, 8, No. 10, pp. 1798–1804.MATHCrossRefGoogle Scholar
  27. 7.27.
    Gol’dshtein, Iu.B., and Entov, V.M., Some Qualitative Techniques in Failure Mechanics, Moscow, Institute for Problems in Mechanics, 1976, 53 pp.Google Scholar
  28. 7.28.
    Gol’dshtein, Iu.B., and Solomeshch, M.A., On optimal design of beams with dynamic loads, Stroit. Mekhanika i Rashchet Sooruzhenii, 1968, No. 4, pp. 27–30.Google Scholar
  29. 7.29.
    Grinev, V.B., and Vasil’chenko, V.F., Optimization of beams for nonstationary loads, Problemy Machinostroienia, 1981, 14, pp. 9–18.Google Scholar
  30. 7.30.
    Grinev, V.B., and Filippov, A.P., Optimal design of structures with given natural frequencies, Prikl. Mekhanika, 1971, 7, No. 10, pp. 19–25.Google Scholar
  31. 7.31.
    Gura, N.M., Shell of revolution with maximal rigidity, subjected to torsion, Izv. Akad. Nauk SSSR, MTT, 1971, No. 1, pp. 138–144.Google Scholar
  32. 7.32.
    Gyunter, N.M., Course in Variational Calculus, Moscow and Leningrad, OGIZ, GITL, 1942, 308 pp.Google Scholar
  33. 7.33.
    Haug, E.J., and Arora, J.S., Distributed parameter structural optimization for dynamic response. In: Optimization of Distributed Parameter Structures, E.J. Haug and J. Cea (eds.), Alphen aan den Rijn, Sijthoff and Noordhoff, 1981, pp. 474–515.Google Scholar
  34. 7.34.
    Haug, E.J., Arora, J.S., and Feng, T.T., Sensitivity analysis and optimization of structures for dynamic response, ASME Journal Mech. Des. 1978, 100, pp. 311–318.CrossRefGoogle Scholar
  35. 7.35.
    Haug, E.J., and Feng, T.T., Optimization of distributed parameter structures under dynamic loads, Control and Dynamic Systems, 1977, 13, pp. 207–246.MathSciNetGoogle Scholar
  36. 7.36.
    Haug, E.J., and Feng, T.T., Optimal design of dynamically loaded continuous structures, Intern. J. Numer. Meth. Eng., 1978, 12, pp. 299–307.MathSciNetMATHCrossRefGoogle Scholar
  37. 7.37.
    Hegemeier, G.A., and Tang, H.T., A variational principle, the finite element method and optimal structural design for a given deflection. In: Optimization in Structural Design. A. Sawczuk and Z. Mróz (eds.). Springer Verlag, Berlin, 1975, p. 464–483.Google Scholar
  38. 7.38.
    Huang, N.C., Optimal design of elastic structures for maximum stiffness, Intern. J. Solids Struct. 1968, 4, pp. 689–700.CrossRefGoogle Scholar
  39. 7.39.
    Huang, N.C., Optimal design of elastic beams for minimum-maximum deflection, J. Appl. Mech., 1971, 38, No. 4, pp. 1078–1081.CrossRefGoogle Scholar
  40. 7.40.
    Huang, N.C., and Sheu, C.Y., Optimal design of elastic circular sandwich beams for minimum complience, J. Appl. Mech., 1970, 37, p. 569.CrossRefGoogle Scholar
  41. 7.41.
    Huang, N.C., and Tang, H.T., Minimum weight design of eastic sandwich beams with deflection constraints, J. Optimization Theory Appl., 1969, 4, No. 4, pp. 277–298.MathSciNetMATHCrossRefGoogle Scholar
  42. 7.42.
    Hutchinson, J.W., and Niordson, F.I., Designing vibrating membranes. In: Mechanics of Continuous Media and Related Problems of Analysis, Moscow, 1972, pp. 581–590.Google Scholar
  43. 7.43.
    Jamakawa, H., Optimum structural designs for dynamic response. In: New Directions in Optimum Structural Design, E. Atrek et al. (eds.), New York, Wiley and Sons, 1984, pp. 249–268.Google Scholar
  44. 7.44.
    Kamat, M.P., Effect of shear deformation and rotary inertia on optimum beam frequencies, Intern. J. Numer. Meth. Eng., 1975, 9, pp. 51–62.MATHCrossRefGoogle Scholar
  45. 7.45.
    Karihaloo, B.L., and Niordson, F.I., Optimum design of vibrating cantilevers, J. Optimization Theory Appl., 1973, 11, No. 6, pp. 638–654.MathSciNetMATHCrossRefGoogle Scholar
  46. 7.46.
    Kartvelishvili, V.M., and Kobelev, V.V., Rational schemes for reinforcing layered plates made of composite materials, Prikl. Mat. Mekh., 1984, No. 1, pp. 68–80.Google Scholar
  47. 7.47.
    Kartvelishvili, V.M., Mironov, A.A., and Samsonov, A.M., A numerical technique for solving optimization problems for reinforced structures, Izv. Akad. Nauk SSSR, MTT, 1981, No. 2, pp. 93–103.Google Scholar
  48. 7.48.
    Krein, M.G., On some problems of maxima and minima for eigenvalues, and Liapunov zones of stability, Prikl. Mat. Mekh., 1951, 15, No. 3, pp. 323–348.MathSciNetGoogle Scholar
  49. 7.49.
    Kurshin, L.M., and Rastorguyev, G.I., On the optimal shape of cross-section of a torsioned shaft, Izv. Akad. Nauk Arm. SSR, Mekh., 1979, 22, No. 6, pp. 17–19.Google Scholar
  50. 7.50.
    Kurshin, L.M., On the problem of determining the cross-section of a shaft having maximal torsional stiffness, Dokl. Akad. Nauk SSSR, 1975, 223, No. 3, pp. 585–588.MathSciNetGoogle Scholar
  51. 7.51.
    Kurshin, L.M., and Onoprienko, P.N., Determination of the shape of a doubly connected cross-section for a shaft with maximal torsional stiffness, Prikl. Mat. Mekh., 1976, 40, No. 6, pp. 1078–1084.MathSciNetGoogle Scholar
  52. 7.52.
    Lepik, U., Optimal design of beams with minimum complience, Intern. J. Nonlinear Mechanics, 1978, 13, pp. 33–42.MATHCrossRefGoogle Scholar
  53. 7.53.
    Lipin, E.K., ad Groshev, G.P., Design of structures with minimal volume with constraints on generalized rigidity and minimum thickness, Ucheb. Zapiski TsAGI, 1979, 10, No. 2, pp. 143–148.Google Scholar
  54. 7.54.
    Litvinov, B.G., Bending problem for plates with variable thickness, Prikl. Mekhan., 1975, 11, No. 5, pp. 54–61.MathSciNetGoogle Scholar
  55. 7.55.
    Litvinov, B.G., Optimal eigenvalue problems, Ukr. Mat. Zh., 1981, 33, No. 5, pp. 610–614.MathSciNetMATHGoogle Scholar
  56. 7.56.
    Litvinov, B.G., Optimal control of coefficients in elliptic systems, Differen. Uravn., 1982, 18, No. 6, pp. 1036–1047.MathSciNetMATHGoogle Scholar
  57. 7.57.
    Lur’ie, A.I., Theory of Elasticity, Moscow, Nauka, 1970, 940 pp.Google Scholar
  58. 7.58.
    Lur’ie, K.A., and Cherkaev, A.V., On an application of Prager’s theorem to optimal design of thin plates, Izv. Akad. Nauk SSSR, MTT, 1976, No. 6, pp. 157–159.Google Scholar
  59. 7.59.
    Lavrov, N.A., Lur’ie, K.A., and Cherkaev, A.V., Inhomogeneous shaft with maximal torsional rigidity, Izv. Akad. Nauk SSSR, MTT, 1980, No. 6, pp. 82–92.Google Scholar
  60. 7.60.
    Marchuk, G.I., Computational Techniques of Mathematics, Moscow, Nauka, 1980, 535 pp.Google Scholar
  61. 7.61.
    Martin, J.B., The optimal design of beams and frames with complience, Int. J. Solids Struct., 1971, 7, pp. 63–81.MATHCrossRefGoogle Scholar
  62. 7.62.
    McCart, B.R., Haug, E.J., and Streeter, T.D., Optimal design of structure with constraints on natural frequency, AIAA J., 1970, 8, No. 6, pp. 1012–1019.MathSciNetCrossRefGoogle Scholar
  63. 7.63.
    Miele, A., Mangiavacchi, A., Mohanty, V.P., and Wu. A.K., Numerical determination of minimum mass structures with specified natural frequencies, Intern. J. Numer. Meth. Eng., 1978, 13, No. 2, pp. 203–223.CrossRefGoogle Scholar
  64. 7.64.
    Niordson, F.I., On the optimal design of a vibrating beam, Quart. Appl. Math. 1965, 23, No. 1, pp. 47–53.MathSciNetGoogle Scholar
  65. 7.65.
    Niordson, F.I., Some results concerning optimal design of vibrating plates. In: Optimization Methods in Structural Design, H. Eschenauer and N. Olhoff (eds.), Mannheim Bibl. Inst. 1983, pp. 380–386.Google Scholar
  66. 7.66.
    Niordson, F.I., Optimal design of elastic plates with constraint on the slope of thickness function, Intern. J. Solids Struct., 1983, 19, No. 2, pp. 141–151.MathSciNetMATHCrossRefGoogle Scholar
  67. 7.67.
    Olhoff, N., Optimal design of vibrating circular plates, Int. J. Solids Struct., 1970, 6, pp. 139–156.MATHCrossRefGoogle Scholar
  68. 7.68.
    Olhoff, N., Optimal design of vibrating rectangular plates, Int. J. Solids Struct., 1974, 10, No. 1, pp. 93–109.MathSciNetMATHCrossRefGoogle Scholar
  69. 7.69.
    Olhoff, N., Optimization of vibrating beams with respect to higher order natural frequencies, J. Struct. Mech., 1976, 4, pp. 87–122.CrossRefGoogle Scholar
  70. 7.70.
    Olhoff, N., Maximizing higher order eigenfrequencies of beam with constraints on the design geometry, J. Struct. Mech., 1977, 5, pp. 107–134.CrossRefGoogle Scholar
  71. 7.71.
    Olhoff, N., Optimization of transversely vibrating beams and rotating shafts. In: Optimization of distributed parameter structures, E.J. Haug and J. Cea (eds.), Alphen aan den Rijn, Sijthof and Noordhoff, 1981, pp. 177–199.Google Scholar
  72. 7.72.
    Pister, K.S., Optimal design of structures under dynamic loading. In: Optimization of distributed parameter structures, E.J. Haug and J. Cea (eds.), Alphen aan den Rijn, Sijthof and Noordhoff, 1981, pp. 569–585.Google Scholar
  73. 7.73.
    Pierson, B.L., An optimal control approach to minimum weight vibrating beam design, J. Struct. Mech., 1977, 5, pp. 147–148.CrossRefGoogle Scholar
  74. 7.74.
    Plaut, R.H., Optimal structural design for given deflection under periodic loading, Quart. Appl. Math., 1971, 29, pp. 315–318.MathSciNetMATHGoogle Scholar
  75. 7.75.
    Plaut, R.H., On minimizing the response of structures to dynamic loading, ZAMP, 1970, 21, pp. 1004–1010.MATHCrossRefGoogle Scholar
  76. 7.76.
    Polya, G., Torsional rigidity, principal frequency, electrostatic capacity and symmetrization, Quart. Appl. Math., 1948, 6, No. 3.MathSciNetGoogle Scholar
  77. 7.77.
    Polya, G., Legt die Stelle der grössten Beanspruchung der Oberfläche? Zeitschr. angew. Math. Mech.,1930, 10, No. 4, pp. 353–360.MATHCrossRefGoogle Scholar
  78. 7.78.
    Prager, W., Optimal design of statically determinate beams for given deflection, Intern. J. Mech. Sci., 1971, 13, p. 893.CrossRefGoogle Scholar
  79. 7.79.
    Prager, W., Optimal thermoelastic design for given deflection, Intern. J. Mech. Sci., 1970, 12, pp. 705–509.CrossRefGoogle Scholar
  80. 7.80.
    Rao, S.S., Structural optimization under shock and vibration environment, Shock and Vibration Digest, 1979, 11, No. 2, pp. 3–12.CrossRefGoogle Scholar
  81. 7.81.
    Reiss, R., Optimal compliance criterion for axisymmetric solid plates, Intern. J. Solids Struct., 1976, 12, pp. 319–329.MathSciNetMATHCrossRefGoogle Scholar
  82. 7.82.
    Samsonov, A.M., Necessary conditions for an optimal distribution of stiffness of a rib in an elastic plate, Izv. Akad. Nauk SSSR, MTT, 1980, No. 1, pp. 136–144.MathSciNetGoogle Scholar
  83. 7.83.
    Samsonov, A.M., Optimal location for a thin elastic rib in an elastic plate, Izv. Akad. Nauk SSSR, MTT, 1978, No. 1, pp. 132–138.Google Scholar
  84. 7.84.
    Samsonov, A.M., Optimal design of rib-reinforced plates. In: Optimization Methods in Structural Design. H. Eschenauer and N. Olhoff (eds.), Mannheim Bibl. Inst., 1983, pp. 387–393.Google Scholar
  85. 7.85.
    Seyranian, A.P., Optimal design of beams with constraints on deflections, Izv. Akad. Nauk Arm. SSR, Mekh., 1975, No. 6, pp. 24–33.Google Scholar
  86. 7.86.
    Seyranian, A.P., Study of an extremum in an optimality problem concerning vibrations of a circular plate, Izv. Akad. Nauk SSSR, No. 6, pp. 113–118.Google Scholar
  87. 7.87.
    Sheu, C.Y., Elastic minimum weight design for specified fundamental frequency, Intern. J. Solids Struct., 1968, 4, No. 10, pp. 953–958.CrossRefGoogle Scholar
  88. 7.88.
    Shield, R.T., and Prager, W., Optimal structural design for given deflection, J. Appl. Math. Phys., 1970, 21, pp. 513–523.MATHCrossRefGoogle Scholar
  89. 7.89.
    Taylor, J.E., Minimum mass bar for axial vibration at specified natural frequency, AIAA J., 1967, 5, No. 10, pp. 1911–1913.CrossRefGoogle Scholar
  90. 7.90.
    Taylor, J.E., Optimal design of a vibrating bar with specified minimal cross-section, AIAA J., 1968, 6, No. 7, pp. 1379–1381.CrossRefGoogle Scholar
  91. 7.91.
    Thermann, K., Optimal design criteria of dynamically loaded elastic structures. In: Optimization in Structural Design, A. Sawczuk and Z. Mróz (eds.), 1975, Springer Verlag, New York, pp. 152–167.Google Scholar
  92. 7.92.
    Timoshenko, S.P., and Goodier, G., Theory of Elasticity, McGraw-Hill, New York, 1956.Google Scholar
  93. 7.93.
    Timoshenko, S.P., Computation of Elastic Shells (in Russian), Gostekhizdat, 1933, 124 pp.Google Scholar
  94. 7.94.
    Timoshenko, S.P., Strength and Vibrations of Structural Elements, (in Russian), Moscow, Nauka, 1975, 704 pp.Google Scholar
  95. 7.95.
    Troitskii, V.A., Optimization of elastic beams for free vibrations, Izv. Akad. Nauk SSSR, MTT, 1976, No. 3, pp. 145–152.MathSciNetGoogle Scholar
  96. 7.96.
    Turner, M.J., Design of minimum mass structure with specified natural frequencies, AIAA J., 1966, 5, No. 3, pp. 406–412.CrossRefGoogle Scholar
  97. 7.97
    Ukraintsev, G.V., and Frolov, V.M., Technique for optimizing the stiffness of the load-bearing wing structure, with varying the distribution of relative thickness and the shape, Uch. Zap. TsAGI 1972, 3, No. 4.Google Scholar
  98. 7.98.
    Venkayya, V.B., and Khot, N.S., Design of optimum structures to impulse type loading, AIAA J., 1975, 13, No. 8, pp. 989–994.MATHCrossRefGoogle Scholar
  99. 7.99.
    Wasiutynski, Z., On the congruency of forming according to the minimum potential energy with that according to the equal strength, Bull. Acad. Pol. Sci., Series Sci. Techn. 1960, 8, No. 6, pp. 259–268.MATHGoogle Scholar
  100. 7.100.
    Wasiutynski, Z., On the criterion of minimum deformability design of elastic structures; effect of own material, Bull. Acad. Pol. Sci., Series Sci. Techn. 1966, 14, No. 9, pp. 875–878.Google Scholar
  101. 7.101.
    Wasiutyński, Z., On the equivalence of design principles: constant volume and minimum volume-constant potential, Bull. Acad. Pol. Sci., Series Sci. Techn. 1966, 14, No. 9, pp. 883–885.Google Scholar
  102. 7.102.
    Weisshaar, T.A., Optimization of simple structures with higher mode frequency constraints, AIAA J., 1972, 10, pp. 691–693.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1990

Authors and Affiliations

  • N. V. Banichuk
    • 1
  1. 1.Institute for Problems in MechanicsUSSR Academy of SciencesMoscowSoviet Union

Personalised recommendations