Skip to main content

Fibonacci Facts and Formulas

  • Conference paper
Sequences

Abstract

We investigate several methods of computing Fibonacci numbers quickly and generalize some properties of the Fibonacci numbers to degree r Fibonacci (R-nacci) numbers. Sections 2 and 3 present several algorithms for computing the traditional, degree two, Fibonacci numbers quickly. Sections 4 and 5 investigate the structure of the binary representation of the Fibonacci numbers. Section 6 shows how the generalized Fibonacci numbers can be expressed as rounded powers of the dominant root of the characteristic equation. Properties of the roots of the characteristic equation of the generalized Fibonacci numbers are presented in Section 7. Section 8 introduces several properties of the Zeckendorf representation of the integers. Finally, in Section 9 the asymptotic proportion of l’s in the Zeckendorf representation of integers is computed and an easy to compute closed formula is given.

Supported by a fellowship from the Italian National Research Council (CNR 203.01.43)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A. V., J. E. Hopcroft and J. D. Ullman, “The Design and Analysis of Computer Algorithms,” Addison-Wesley, Reading MA; 1974.

    MATH  Google Scholar 

  2. Capocelli, R. M., “A generalization of Fibonacci Trees,” Third International Conference on Fibonacci Numbers and Their Applications, Pisa, Italy; 1988.

    Google Scholar 

  3. Capocelli, R. M., and P. Cull, “Generalized Fibonacci numbers are rounded powers,” Third International Conference on Fibonacci Numbers and Their Applications, Pisa, Italy; 1988.

    Google Scholar 

  4. Chang, D. K., “On Fibonacci Binary Sequences,” The Fibonacci Quarterly 24, 178–179; 1986.

    MathSciNet  MATH  Google Scholar 

  5. Er, M. C., “A fast algorithm for computing order-k Fibonacci numbers,” The Computer Journal 26, 224–227; 1983.

    Article  MathSciNet  MATH  Google Scholar 

  6. Feinberg, M., “Fibonacci-Tribonacci,” The Fibonacci Quarterly 1, 71–74; 1963.

    Google Scholar 

  7. Gallager, R. G., “Vaxiations on a theme of Huffman,” IEEE Transactions on Information Theory IT-24, 668–674; 1978.

    Google Scholar 

  8. 8] Gries, D. and G. Levin, “Computing Fibonacci numbers (and similarly defined functions) in log time,” Information Processing Letters 11, 68–69; 1980.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoggat Jr., V. E., and M. Bicknell, “Generalized Fibonacci Polynomials and Zeckendorf’s Representations,” The Fibonacci Quarterly 11, 399–419; 1973.

    MathSciNet  Google Scholar 

  10. Knuth, D. E., “The Art of Computer Programming,” Vols. 1 and 2, Addison- Wesley, Reading MA; 1973, 1981.

    Google Scholar 

  11. Pettorossi, A., “Derivation of an 0(k 2 log n) algorithm for computing order-fc Fibonacci numbers from the 0(k 2 log n) matrix multiplication method,” Information Processing Letters 11, 172–179; 1980.

    Article  MathSciNet  MATH  Google Scholar 

  12. Romano, A., “Applied statistics for science and industry,” Allyn and Bacon, Boston; 1977.

    Google Scholar 

  13. Shortt J., “An iterative program to calculate Fibonacci Numbers in O(log n) arithmetic operations,” Information Processing Letters 7, 299–303; 1978.

    Article  MathSciNet  MATH  Google Scholar 

  14. Spickerman, W. R., “Binet’s Formula for the Tribonacci Sequence,” The Fibonacci Quarterly 20, 118–120; 1982.

    MathSciNet  MATH  Google Scholar 

  15. Urbanek, F. J., “An O(logn) algorithm for computing the n th element of the solution of a difference equation,” Information Processing Letters 11, 66–67; 1980.

    Article  MathSciNet  MATH  Google Scholar 

  16. Vorob’ev, N.N., “Fibonacci Numbers,” Pergamon Press, New York; 1961.

    Google Scholar 

  17. Welch, T. A., “A technique for high-perfomance data compression,” Computer 17, 8–19; 1984.

    Article  Google Scholar 

  18. Zeckendorf, E., “Representations des Nombres Naturels par une Somme de Nombres de Fibonacci ou de Nombres de Lucas,” Bulletin de la Société Royale des Sciences de Liege 179–182; 1972.

    Google Scholar 

  19. Ziv, J. and A. Lempel, “Compression of individual sequences via variable-rate coding,” IEEE Transactions on Information Theory IT-24, 530–536; 1978.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Capocelli, R.M., Cerbone, G., Cull, P., Holloway, J.L. (1990). Fibonacci Facts and Formulas. In: Capocelli, R.M. (eds) Sequences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3352-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3352-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7977-8

  • Online ISBN: 978-1-4612-3352-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics