# On Pseudo-Random Arrays Constructed from Patterns with distinct Differences

Conference paper

## Abstract

A few constructions of infinite arrays such that, in each (2^{ n }+*n*-1)×(2^{ n }+1) subarray, each *n*×2 binary matrix appears exactly once, are given. In other constructions each *n*×2 binary nonzero matrix appears exactly once. The constructions are using patterns with distinct differences, and although the arrays are not linear they have some similar properties to m-sequences.

### Keywords

Radar Sonar Fermat Dene## Preview

Unable to display preview. Download preview PDF.

### References

- [1]S. W. Golomb,
*Shift Register Sequences*. Laguna Hills, CA: Aegean Park Press, 1982.Google Scholar - [2]I. S. Reed and R. M. Stewart, “Note on the existence of perfect maps”
*IRE Trans, on Inform. Theory*, vol. 8, pp. 10–12, January 1962.MathSciNetCrossRefMATHGoogle Scholar - [3]B. Gordon, “On the existence of perfect maps”
*IEEE Trans, on Inform. Theory*, vol. 12, pp. 486–487, October 1966.CrossRefGoogle Scholar - [4]T. Nomura, H. Miyakawa, H. Imai, and A. Fukuda, “A theory of two-dimensional linear recurring arrays”,
*IEEE Trans, on Inform. Theory*, vol. 18, pp. 775–785, November 1972.MathSciNetCrossRefMATHGoogle Scholar - [5]F. J. Macwilliams, and N. J. A. Sloane, “Pseudo-random sequences and arrays”,
*Proceedings of the IEEE*, vol. 64, pp. 1715–1729, December 1976.MathSciNetCrossRefGoogle Scholar - [6]S. L. Ma, “A note on binary arrays with a certain window property”,
*IEEE Trans, on Inform. Theory*, vol. 30, pp. 774–775, September 1984.CrossRefMATHGoogle Scholar - [7]C. T. Fan, S. M. Fan, S. L. Ma, and M. K. Siu, “On de Bruijn arrays”,
*Ars Combinatorial vol*. 19A, pp. 205–213, May 1985.MathSciNetGoogle Scholar - [8]T. Etzion, “Constructions for Perfect Maps and Pseudo-Random Arrays”,
*IEEE Trans, on Inform. Theory*, to appear.Google Scholar - [9]J. H. Van Lint, F. J. Macwilliams, and N. J. A. Sloane, “On pseudo-random arrays”,
*SIAM J. Appl. Math*. vol. 36, pp. 62–72, February 1979.MathSciNetCrossRefMATHGoogle Scholar - [10]R. B. Baneiji, “The construction of binary matrices with distinct submatrices”,
*IEEE Trans, on Computers*, vol. C-27, pp. 162–164, February 1978.CrossRefGoogle Scholar - [11]J. Denes and A. D. Keedwell, “A new construction of two-dimensional array with the window property”, submitted for publication.Google Scholar
- [12]S. W. Golomb and H. Taylor, “Tuscan squares - a new family of combinatorial designs”,
*Ars Combinatorial*vol. 20-B, pp. 115–132, December 1985.MathSciNetGoogle Scholar - [13]G. S. Bloom and S. W. Golomb, “Applications of numbered undirected graph”,
*IEEE proceedings*, vol. 65, pp. 562–570, April 1977.CrossRefGoogle Scholar - [14]J. P. Costas, “A study of a class of detection waveforms having nearly ideal range- Doppler ambiguity properties”,
*IEEE proceedings*, vol. 72, pp. 996–1009, August 1984.CrossRefGoogle Scholar - [15]E. N. Gilbert, “Latin squares which contain no repeated diagrams”,
*SIAM Review*, vol.**8**, pp. 189–198, April 1965.CrossRefGoogle Scholar - [16]S. W. Golomb, T. Etzion, and H. Taylor, “Polygonal path constructions for Tuscan- k squares”,
*Ars Combinatoria*, to appear.Google Scholar - [17]T. Etzion, “ On hamiltonian decomposition of
*K*_{n}^{*}, patterns with distinct differences, and Tuscan squares”, submitted for publication.Google Scholar - [18]S. W. Golomb and H. Taylor, “Two-dimensional synchronization patterns for minimum ambiguity”,
*IEEE Trans, on Information Theory*, vol. 28, pp. 600–604, July 1982.CrossRefGoogle Scholar - [19]S. W. Golomb, “Algebraic constructions for Costas arrays”,
*J. Combin. Theory*, Ser. A, vol. 37, pp. 13–21, July 1984.MathSciNetCrossRefMATHGoogle Scholar - [20]S. W. Golomb and H. Taylor, “Constructions and properties of Costas arrays”,
*IEEE Proceedings*, vol. 72, pp. 1143–1163, September 1984.CrossRefMATHGoogle Scholar - [21]J. E. H. Elliott and A. T. Butson, “Relative difference sets”,
*Illinois J. Math.*, vol. 10, pp. 517–531, 1966.MathSciNetMATHGoogle Scholar - [22]P. V. Kumar, “On the existence of square, dot-matrix patterns having a specific 3- valued periodic-correlation function”,
*IEEE Trans, on Information Theory*, to appear.Google Scholar - [23]N. G. de Bruijn, “A combinatorial problem
**”**,*Nederl. Akad. Wetensch. Proc.*, vol. 49, pp. 758–764, 1946.MathSciNetGoogle Scholar - [24]H. M. Fredricksen, “A class of non-linear de Bruijn cycles”,
*J. Combin. Theory*, Ser. A, vol. 19, pp. 192–199, September 1975.MathSciNetCrossRefMATHGoogle Scholar - [25]H. M. Fredricksen, “A survey of full length nonlinear shift register cycle algorithms”,
*SIAM Review*, vol. 24, pp. 195–221, April 1982.MathSciNetCrossRefMATHGoogle Scholar - [26]T. Etzion and A. Lempel, “Algorithms for the generation of full-length shift-register sequences”,
*IEEE Trans, on Inform. Theory*, vol. 30, pp. 480–484, May 1984.MathSciNetCrossRefMATHGoogle Scholar - [27]R. K. Guy,
*Unsolved Problems in Number Theory*, Berlin, Heidelberg, New York: Springer-Verlag 1981.MATHGoogle Scholar - [28]M. R. Schroeder,
*Number Theory in Science*and*Communication*, Berlin, Heidelberg, New York, Tokyo: Springer-Verlag 1986.MATHGoogle Scholar

## Copyright information

© Springer-Verlag New York Inc. 1990