Sequences pp 195-207 | Cite as

On Pseudo-Random Arrays Constructed from Patterns with distinct Differences

  • Tuvi Etzion
Conference paper


A few constructions of infinite arrays such that, in each (2 n +n-1)×(2 n +1) subarray, each n×2 binary matrix appears exactly once, are given. In other constructions each n×2 binary nonzero matrix appears exactly once. The constructions are using patterns with distinct differences, and although the arrays are not linear they have some similar properties to m-sequences.


Radar Sonar Fermat Dene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. W. Golomb, Shift Register Sequences. Laguna Hills, CA: Aegean Park Press, 1982.Google Scholar
  2. [2]
    I. S. Reed and R. M. Stewart, “Note on the existence of perfect maps” IRE Trans, on Inform. Theory, vol. 8, pp. 10–12, January 1962.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    B. Gordon, “On the existence of perfect maps” IEEE Trans, on Inform. Theory, vol. 12, pp. 486–487, October 1966.CrossRefGoogle Scholar
  4. [4]
    T. Nomura, H. Miyakawa, H. Imai, and A. Fukuda, “A theory of two-dimensional linear recurring arrays”, IEEE Trans, on Inform. Theory, vol. 18, pp. 775–785, November 1972.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    F. J. Macwilliams, and N. J. A. Sloane, “Pseudo-random sequences and arrays”, Proceedings of the IEEE, vol. 64, pp. 1715–1729, December 1976.MathSciNetCrossRefGoogle Scholar
  6. [6]
    S. L. Ma, “A note on binary arrays with a certain window property”, IEEE Trans, on Inform. Theory, vol. 30, pp. 774–775, September 1984.CrossRefMATHGoogle Scholar
  7. [7]
    C. T. Fan, S. M. Fan, S. L. Ma, and M. K. Siu, “On de Bruijn arrays”, Ars Combinatorial vol. 19A, pp. 205–213, May 1985.MathSciNetGoogle Scholar
  8. [8]
    T. Etzion, “Constructions for Perfect Maps and Pseudo-Random Arrays”, IEEE Trans, on Inform. Theory, to appear.Google Scholar
  9. [9]
    J. H. Van Lint, F. J. Macwilliams, and N. J. A. Sloane, “On pseudo-random arrays”, SIAM J. Appl. Math. vol. 36, pp. 62–72, February 1979.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    R. B. Baneiji, “The construction of binary matrices with distinct submatrices”, IEEE Trans, on Computers, vol. C-27, pp. 162–164, February 1978.CrossRefGoogle Scholar
  11. [11]
    J. Denes and A. D. Keedwell, “A new construction of two-dimensional array with the window property”, submitted for publication.Google Scholar
  12. [12]
    S. W. Golomb and H. Taylor, “Tuscan squares - a new family of combinatorial designs”, Ars Combinatorial vol. 20-B, pp. 115–132, December 1985.MathSciNetGoogle Scholar
  13. [13]
    G. S. Bloom and S. W. Golomb, “Applications of numbered undirected graph”, IEEE proceedings, vol. 65, pp. 562–570, April 1977.CrossRefGoogle Scholar
  14. [14]
    J. P. Costas, “A study of a class of detection waveforms having nearly ideal range- Doppler ambiguity properties”, IEEE proceedings, vol. 72, pp. 996–1009, August 1984.CrossRefGoogle Scholar
  15. [15]
    E. N. Gilbert, “Latin squares which contain no repeated diagrams”, SIAM Review, vol. 8, pp. 189–198, April 1965.CrossRefGoogle Scholar
  16. [16]
    S. W. Golomb, T. Etzion, and H. Taylor, “Polygonal path constructions for Tuscan- k squares”,Ars Combinatoria, to appear.Google Scholar
  17. [17]
    T. Etzion, “ On hamiltonian decomposition of K n*, patterns with distinct differences, and Tuscan squares”, submitted for publication.Google Scholar
  18. [18]
    S. W. Golomb and H. Taylor, “Two-dimensional synchronization patterns for minimum ambiguity”, IEEE Trans, on Information Theory, vol. 28, pp. 600–604, July 1982.CrossRefGoogle Scholar
  19. [19]
    S. W. Golomb, “Algebraic constructions for Costas arrays”, J. Combin. Theory, Ser. A, vol. 37, pp. 13–21, July 1984.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    S. W. Golomb and H. Taylor, “Constructions and properties of Costas arrays”, IEEE Proceedings, vol. 72, pp. 1143–1163, September 1984.CrossRefMATHGoogle Scholar
  21. [21]
    J. E. H. Elliott and A. T. Butson, “Relative difference sets”, Illinois J. Math., vol. 10, pp. 517–531, 1966.MathSciNetMATHGoogle Scholar
  22. [22]
    P. V. Kumar, “On the existence of square, dot-matrix patterns having a specific 3- valued periodic-correlation function”,IEEE Trans, on Information Theory, to appear.Google Scholar
  23. [23]
    N. G. de Bruijn, “A combinatorial problem, Nederl. Akad. Wetensch. Proc., vol. 49, pp. 758–764, 1946.MathSciNetGoogle Scholar
  24. [24]
    H. M. Fredricksen, “A class of non-linear de Bruijn cycles”, J. Combin. Theory, Ser. A, vol. 19, pp. 192–199, September 1975.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    H. M. Fredricksen, “A survey of full length nonlinear shift register cycle algorithms”, SIAM Review, vol. 24, pp. 195–221, April 1982.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    T. Etzion and A. Lempel, “Algorithms for the generation of full-length shift-register sequences”, IEEE Trans, on Inform. Theory, vol. 30, pp. 480–484, May 1984.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    R. K. Guy, Unsolved Problems in Number Theory, Berlin, Heidelberg, New York: Springer-Verlag 1981.MATHGoogle Scholar
  28. [28]
    M. R. Schroeder, Number Theory in Science and Communication, Berlin, Heidelberg, New York, Tokyo: Springer-Verlag 1986.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Tuvi Etzion
    • 1
  1. 1.Computer Science Department, TechnionHaifaIsrael

Personalised recommendations